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I. MOTIVATION AND PROBLEM STATEMENT

For a human to issue control signals to any robot, whether
for teleoperation or shared control, they must use some form
of interface to communicate with the robotic device [4, 1]. The
human-issued control signal may also be used for instruction,
correction, or feedback [30, 14, 16]. Deviations in timing,
magnitude, or direction between the true signal intended by the
human and that measured through the interface can thus have
rippling effects throughout the human-robot interaction (HRI)
system. Despite being the oldest application of HRI, teleoper-
ation still remains challenging and in many cases inaccessible,
especially for non-expert users controlling complex robotic
systems [26]. The challenges are compounded for people with
motor deficits, given their control signals can be sparse, noisy,
and limited in dimensionality. Although research has made
impressive strides in exploring novel interfaces [7, 27], broad-
ening autonomous robot capabilities [23, 34], and exploring
shared-control strategies [13, 18], complex robot teleoperation
remains the domain of skilled and competent users [17].

Probabilistic robotics techniques are designed to capture the
uncertainties in robot interactions to provide robustness in the
face of sensor and model limitations. In these techniques—
which were first developed for autonomous robots transi-
tioning from factories to the real world—two fundamental
sources of noise are modeled: (1) uncertainty in the robot
sensor measurements and (2) noise in actuation, which leads to
uncertainty in the state transition models [32]. I propose that
for human-robot systems which also involve human control
signals, a third source of uncertainty and noise is imperative
to model: (3) human interaction with the control interface [19].

Historically, the source of the human signal and its char-
acteristics have been largely ignored. For example, trajec-
tory data is treated the same by an imitation learning al-
gorithm whether it was collected via kinesthetic or tele-
operated demonstrations. Many of the sources of variance
are accentuated within the domain of assistive devices for
persons with motor impairments. Within the clinical domain
of assistive devices, the physical mechanism for activating the
interface is designed and chosen by considering the available
human mobility [5]. Many are prohibited from using an
assistive devices independently due to their inability to reliably
control an interface [11]. Assistive autonomy is generally
interface agnostic. The specific operational characteristics of
the interface may not be explicitly taken into consideration
when the human command is utilized by the autonomous sys-
tem. For instance, once the teleoperation signal is measured,

Fig. 1. Teleoperation signal mappings. Typically only y(·) is modeled, though
h(·) might be known. Our contributed framework explicitly represents g(·)
and h(·). at, ut, xt: robot task-space action and associated control command,
and robot state. ϕt

i, ϕ
t
m: intended versus measured interface action.

the autonomy pipeline treats velocity commands similarly,
regardless of their source. My prior work has identified this as
a major gap in the domain of assistive devices for people with
motor impairments [19, 21, 20]. My goal is to design algo-
rithms that maximize the human’s autonomy by leveraging
robotics autonomy. My approach is to develop algorithms
that reason about the source of the human’s signal and how it
might be filtered and altered through the control interface prior
to using the signal for any further actions, decision making or
assistance. I call this interface-aware robot assistance.

II. FORMALIZING INTERFACE-AWARE ASSISTIVE ROBOTS

We introduced the framework of interface awareness in
robot teleoperation and shared control [8]. Consider the map-
pings involved in teleoperation, as shown in Fig 1. Let at

denote the action primitives defined in the physically assistive
robotic device task space (e.g., move forward, turn left) that
the human desires to be executed by the robot. The dynamics
of the robotic device dictates that action at is achieved
through robot control command ut. Typically, teleoperation
is modeled simply as at 7→ ut; i.e. the human will execute
the control command for their intended robot action. The
output of the interface device is the human input, or user
command uh—which can take the form of a high-level goal,
mid-level motion primitive, or lower level velocity commands.
Although it is common knowledge that humans are noisy,
the human input is tacitly interpreted as a source of ground-
truth or high-confidence information in many uncertain robotic
settings [3, 10, 25]. Even in situations where the human
operator is known to be a non-expert—such as LfD frame-
works that treat demonstration examples as sub-optimal—
there is an implicit assumption that the provided human input
was precisely what they intended [28, 9]. Our approach to
interface-aware signal interpretation is to explicitly consider
the human’s physical interaction with the control interface by
modeling how the physical actions are mapped to task-level
actions through the interface (f(·) in Fig 1) and how the user
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Fig. 2. Interface-aware assistance pipeline.

signal is stochastically altered through the interface (g(·) in
Fig 1). Let ϕt

i ∈ Φ denote the unobservable intended interface
level action initiated by the user that aims to achieve at. The
measured interface level action ϕt

m ∈ Φ is fully observed.
The mapping g(·) : ϕt

i 7→ ϕt
m captures the translation from

intended to measured interface-level physical actions. This
mapping is dictated by the manner of interface activation
but is user-specific. In an ideal noise-free setting, ϕt

i and
ϕt
m are equivalent. However, in practice, ϕt

m may deviate
from ϕt

i due to biases resulting from motor impairments,
interface malfunctions, fatigue, or mental distractions, to name
a few. We call g(·) the human input distortion model. The
mapping h(·) : ϕt

m 7→ ut
h defines how the measured interface

level actions are translated into control signals for the robot
platform. This mapping is typically fixed and dictated by
both the mechanics of the interface and the robot device
control space. In selecting the interface-level action ϕt

i that
achieves at, the human makes use of an inverse controller
f(·) : at 7→ ϕt

i which is an internal model they learn [22]. The
mapping f(·) represents the human’s understanding of how
the interface output maps to the robot’s inverse kinematics
and dynamics. It is often incorrectly assumed that f(·) is
the inverse of the mapping h(·); which as discussed above,
is fixed and dictated by the mechanics of the interface. This
amounts to falsely implying a perfect understanding of the
robot platform and interface on the part of the human. The
complexity of a robot platform and intuitiveness of its motions,
all impact the efficacy of the learned mapping f(·). Even when
an appropriate mapping is learned, faulty memory retrieval due
to time pressure, mental fatigue, attention deficit, or mental
rotation is an additional potential confound [31, 15, 24, 29].

Modeling f(·) and g(·) is important because the user desires
ϕt
i to cause the transitions in the world state, whereas in

reality ϕt
m causes the transition, potentially into undesirable

world states. Moreover, a-priori explicit modeling of f(·) and
g(·) provides additional sources of context to use for robotic
assistance during teleoperation and shared control HRI without
any additional real-time on-board sensors.

III. INTERFACE-AWARE AND TASK AGNOSTIC
ASSISTANCE

Figure 2 shows our contributed interface-aware assistance
pipeline, where assistance happens earlier than is typical
in shared-control systems. The human-robot assistance sys-
tem becomes interface-aware by using the inferred signal
ϕinferred instead of the measured human signal ϕm for
direct teleoperation, planning, or shared-control. ϵh is the

sensorimotor noise in the human input, ϵi is the noise pattern
resulting from the interfacing system, and ϵa and ϵs are
actuation and sensor measurement noise, respectively.

We validated our framework both in simulation and in
a user study with 10 control participants. The experimental
results showed that our interface-aware pipeline significantly
reduced task completion time, cognitive workload, and user
frustration. The assistance system was shown to be most useful
for people who have a good understanding of the control map-
ping but have difficulties providing their intended input [8].
Subsequently, I investigated a task-agnostic evolution to the
interface-aware algorithm in a manipulation task that includes
features present in many Activities of Daily Living [6]. I was
motivated by the hypothesis that, by leveraging known mod-
els of the user’s stochastic interface interaction and internal
mapping, which are not specific to a particular task, providing
assistance at the interface-level actions, even without a known
policy p(a|x) for the given state x, could enhance overall
task performance. While having knowledge of a policy can
further enhance interface-aware assistance, it is not a prereq-
uisite for providing assistance. In a case study with Spinal
Cord Injured participants controlling a 7DOF Kinova Jaco
robotic arm with a 1D sip/puff interface, we demonstrated the
ability to leverage f(·) and g(·) to provide safety-aware and
task-agnostic inference and corrections at the interface-signal
level, eliminating the need for complex planners. Our method
offers the advantage of not requiring intense computations for
assistance, unlike previous approaches [2].

IV. FUTURE RESEARCH DIRECTIONS

For future work, I am motivated by a desire to further
generalize my algorithmic interface-aware inference work,
perform rigorous evaluations with end-user subject studies,
and contribute interface-aware policy learning algorithms. I
will also explore efficient methods for modeling f(·) and g(·).

One of the simplifying assumptions of our original frame-
work was that both the subject’s internal mapping f(·) and the
stochastic deviations of human input g(·) remain stationary;
however, they are in fact non-static. The human’s understand-
ing of the robot and interface evolves the more they interact,
as does the human’s ability to operate the robot and the
interface—hopefully due to successful rehabilitation, but also
possibly due to a degenerative disease [33, 12]. My prior work
has shown that in a simulated ablation study, different levels
of inaccuracy in the noise models can affect the prediction
accuracy of the interface-aware inference and by extension the
utility of the interface-aware assistance. I plan to use active
learning strategies to update the model parameters by tracking
the variability in the difference between ϕm and ϕinferred as
well as tracking inference uncertainty over varying interaction
period lengths to design an interface-aware shared control
framework that is adaptive with respect to time. I aim to
conduct extensive end-user studies to evaluate how interface-
awareness affects user perception of autonomy assistance
compared to an interface-agnostic algorithm in control sharing.
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