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Abstract— Individuals who suffer from severe paralysis often
lose the capacity to perform fundamental body movements
and everyday activities. Empowering these individuals with the
ability to operate robotic arms, in high-dimensions, helps to
maximize both functional utility and human agency. However,
high-dimensional robot teleoperation currently lacks accessibil-
ity due to the challenge in capturing high-dimensional control
signals from the human body, especially in the face of motor
impairments. Body-machine interfacing is a viable option that
offers the necessary high-dimensional motion capture, and
moreover is noninvasive, affordable, and promotes movement
and motor recovery. Nevertheless, to what extent body-machine
interfacing is able to scale to high-dimensional robot control,
and whether it is feasible for humans to learn, remains an
open question. In this exploratory multi-session study, we
demonstrate the feasibility of human learning to operate a body-
machine interface to control a complex, assistive robotic arm
in reaching and Activities of Daily Living tasks. Our results
suggest the manner of control space mapping, from interface to
robot, to play a critical role in the evolution of human learning.

I. INTRODUCTION

People with cervical spinal cord injury (cSCI) can restore
voluntary mobility using assistive robots. Assistive robots
that are functional, intuitive, and learnable ensure continued
robot use [1] and maximize opportunities for movement
and independence to be restored [2]. While there are many
strategies to support patients with robots, such as offloading
tasks completely to full robot autonomy, technologies that
empower patients to directly teleoperate complex robots offer
the freedom to achieve everyday tasks with independence [3].

There are several examples of robotics platforms with
the capability and control complexity to allow patients to
perform Activities of Daily Living (ADLs) and Instrumental
Activities of Daily Living (IADLs) via direct control [4].
However, the robotics community has yet to truly overcome
the dimensionality mismatch problem that exists between
interfaces and complex assistive robots. That is, there lies a
mismatch between the number of control signal dimensions
(1–3) that a single commercially-available interface is capa-
ble of issuing simultaneously, in comparison to the number of
dimensions required for complex robot control (6 or more).
Unfortunately, simultaneous and continuous control of all
translation and orientation dimensions in complex robots
has been extremely challenging with conventional interface
solutions. This is critical because high control complexity is
often needed in order for patients to achieve high-resolution
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dexterous movements in our physical world—and to effi-
ciently perform everyday tasks, in a timely manner, with
intention.

The problem of dimensionality mismatch and making
high-resolution control accessible to patients can poten-
tially be overcome using Body-Machine Interfaces (BoMIs).
BoMIs use motion sensor technologies to measure movement
from the surface of the body [5]. Unlike commercially-
available interfaces, BoMIs have the capacity to generate
control signal inputs, in high-dimensions, from residual body
movements of even patients with cSCI (C3–C6) [6].

Moreover, BoMIs incentivize patients to use their remain-
ing residual mobility [7]. For example, use of BoMIs have
shown to increase patients’ upper body muscle strength
and upper body mobility, with practice [6]. Thus, in ad-
dition to overcoming dimensionality mismatch, there are
deeper implications that extend beyond assistance through
robotics—that is, BoMIs also promote physical therapy and
rehabilitation [8].

A current challenge with BoMIs is that we have a limited
understanding of the extent to which people can learn to re-
coordinate their body movements, to issue high-dimensional
signals, necessary to control complex robots. Prior studies
have raised concern that BoMI control could possibly be
unintuitive and/or difficult to learn as control complexity
in the robot increases [9]. In addition, the question of
whether body movements can be executed with consistency
and sufficient dexterity to complete functional tasks remains
unanswered.

We take steps to address this challenge with an exploratory
investigation of complex robotic arm operation via a high-
dimensional BoMI. More specifically, in this paper, we make
the following contributions:

• A presentation of a multi-session study of high-DoF
robotic arm teleoperation via a high-dimensional BoMI.

• A demonstration that body machine interfacing is feasi-
ble and scalable to higher-DoF robots within a loosely-
structured learning environment.

• An analysis of the impact of control space mappings on
task performance, workload, and human learning.

The remainder of the paper is organized as follows. We
summarize related literature in Section II. The methods
of our multi-session study and its analysis are presented
in Section III. The results of the study are reported in
Section IV, with further discussion within Section V. In
Section VI, we provide our conclusions.



II. RELATED WORK

Assistive machines range from low control complexity,
such as mechanical wheelchairs, to high complexity, such as
robotic arms. Robotic arms with a large number of degrees
of freedom (DoFs) can be difficult to control with current
commercially-available interfaces [10]. A common solution
to this mismatch in dimensionality is modal control [11], in
which only a subset of the control dimensions of the robot are
operated at a given time. While modal control does facilitate
access to the full control space, it does not allow people to
access all control dimensions simultaneously and can lead
to increases in time, cognitive load, and errors, when they
attempt to perform tasks with complex robots [11].

People who suffer from upper and/or lower body paralysis
experience loss of functional independence, and cascading
effects further disrupt quality of life [2]. However, even in
tetraplegia, some residual movements can remain intact [12].
Movement training and therapy that encourage residual
movements and mobility are shown to promote neuroplastic
changes and improve functionality [13].

BoMIs are able to capitalize on these residual body
movements available to patients with paralysis. They are
responsive to patient-to-patient variability (e.g., between or
within levels of SCI) [5], enhance muscle strength and
mobility [6], and achieve functional rehabilitation aims [8].
By casting a net of sensors on the body, the BoMI captures
body movements. In general, BoMIs can be customized
to individuals through their particular availability of body
movements; for example, by tuning the BoMI map’s param-
eters (e.g., gains, offsets) session-by-session [6]. A classic
approach to designing a BoMI map is to describe a linear
relationship between sensor measurements and robot control
commands [6]. More recent examples use iterative linear
methods [14], feedback control (as opposed to feedforward
control) [15], and deep learning methods such as adaptive
nonlinear autoencoders [16].

Brain-Machine Interfaces (BMIs) using implants also offer
the possibility of directly issuing high-dimensional control
signals to overcome the problem of dimensionality mismatch.
Although BMIs have enormous potential to help people with
neurological disorders and injuries, including cSCI, they can
be extremely invasive—requiring surgery to the brain and the
permanent implantation of an electrode array [17]. Though
BMI can be noninvasive using surface electroencephalogra-
phy (EEG), there is less evidence that suggests the signal-to-
noise ratio is sufficient for the continuous and simultaneous
control of robots in high dimensions [18]. We focus in this
work on the lesser-studied BoMI, because of its accessibility
and demonstrated potential to promote motor recovery [6].

BoMIs are interfaced with a variety of assistive platforms,
including powered wheelchairs [19] and robotic arms [20]—
for all of which the control output is either discrete or the
maximum continuous controllable dimensions are fewer than
three. Using a BoMI for higher-dimensional and continuous
control of assistive robots remains an open research question.

III. METHODS

Here we present the experimental details of our multi-
session study of robotic arm operation using a high-
dimensional BoMI (Figure 1).

Participants. A total of ten adults (median age 28 ±8 years)
were recruited to participate in this study. Each participant
completed five sessions of approximately two hours each,
across five consecutive days. Participants were assigned to
one of two groups: task-space (TS) or joint-space (JS). The
TS group controlled the velocity of the robot end-effector in
translation and orientation, while the JS group controlled the
velocity of the robot joints. Group assignment was random
and balanced. All sessions were conducted with the approval
of the Northwestern University Institutional Review Board.
All participants provided their written informed consent.

Body-Machine Interface. A sensor net consisting of four
inertial measurement unit (IMU) sensors (Yost Labs, Ohio,
USA) are placed bilaterally on the scapulae and upper arms,
and anchored to a custom shirt designed to minimize move-
ment artifacts. Sensor placement is predetermined based on
past BoMI studies. To maintain consistency between partic-
ipants, we use orientation data from an additional reference
chest sensor through a predetermined kinematic chain (chest
→ shoulders → upper arms). A Kalman filter is used as
the filtering method for the IMUs, where orientation data is
computed in real-time, onboard the IMU sensors, through a
fusion of accelerometer and gyroscope measurements.

The pipeline and decoder design are visually represented
in Figure 1b (top). The relative quaternion orientations of the
four IMUs in the net (16D) are mapped (similar to [6]) to
a 6D linear subspace using PCA. Initially, PCA is used to
precompute a map (A) and an affine offset (b0), using data
collected from an experienced user, performing a predefined
set of upper body movements (shoulders forward/back and
up/down; elbows in/out). The PCA map allows for a linear
mapping between the 16D orientation data signal (x) and a
6D signal (q) as: q = Ax+ b0.

Robot Control. The lower-dimensional PCA subspace is
used online to control a 7-DoF JACO robotic arm (Kinova
Robotics, Quebec, Canada) with the fifth joint held fixed—
which is the redundant joint in its kinematic chain. We
hold this joint fixed so that both the TS and JS groups are
operating the same number (6) of DoFs, and under the same
control constraints.

The PCs of the lower-dimensional PCA subspace are
mapped to the robot control space as follows. For the
TS group, we prioritize control in translation over control
in orientation by mapping the first three PCs (which by
definition capture more body movement variance than the
three latter PCs) to position (x, y, z) velocities, and the next
three PCs to orientation (θ roll, ϕ pitch, ψ yaw) velocities.
For the JS group, we map the PCs in the order of joints, in
the kinematic chain of the robotic arm.

To avoid involuntary robot commands and to compensate
for sensor noise during study trials, we use a control thresh-



Fig. 1: Overview of the interface-robot pipeline and study tasks. (a) Participant wearing the BoMI and operating the JACO
robotic arm. Reaching targets affixed to a custom-built cage. (b) Top: BoMI IMUs (16D = 4 IMUs × 4D quaternion),
mapped to a 6D linear subspace for continuous and simultaneous control of the robot in task-space (3D translation + 3D
orientation) or joint-space (6D joint angles). Bottom: Progression of study session tasks: (1) free exploration (FE); (2) all-
but-one DoF freezing (DF); (3) FE; (4) center-out reaching; (5) sequential reaching; (6) sequential reaching in a 3D-star
shape; (7) ADL-inspired tasks.

old formulation that is linearly proportional to the applied
gains, shifted by a thresholding constant. To maximize the
utility of the map for each individual, we customize the 6D
signal (q) to the individual through scaling and shifting of
control gains and offsets, determined through observation-
based tuning. Control signals to the robot are published at
an approximate rate of 100 Hz.

Visual Feedback. A graphical-user interface (GUI) dis-
played on a tablet provides real-time visualization of the
robot velocity commands to the participant. A scoring system
also is displayed on the GUI to increase participant engage-
ment and to provide trial-by-trial feedback on performance.
Scores are calculated based on robot end-effector distance-
to-target. Participants are told that this is a score but are not
provided with the calculation details.

Study Protocol. There are three phases of robot operation
in the protocol of a single study session (Figure 1b, bottom).

1) Familiarization: The free exploration (FE) task en-
courages participants to explore and become familiar
with the system. The all-but-one DoF freezing (DF)
task iteratively introduces each control dimension, one
at a time, while all other dimensions are kept frozen.

2) Training: The center-out reaching task starts always
from a fixed center position when reaching targets.1

The sequential reaching task instead begins each reach
from the prior reach’s target position. The order of
targets is randomized and balanced across days to
avoid ordering effects, and this order is preserved
across participants.

3) Evaluation: To evaluate sequential reaching, partici-
pants are presented with five targets, that comprise a
three-dimensional star, in fixed succession. To evalu-

1Ten targets are used as reaching goals, placed to maximize workspace
coverage and diversify reaching movements. Placements remain fixed
throughout the study and across participants.

ate ADL task ability, participants: (a) transfer a cup
(upside-down) from a dish rack and place it (upright)
on the table, (b) pour cereal into a bowl, (c) scoop
cereal from a bowl, and (d) throw away a surgical mask
into a trash bin.

A trial ends upon successful completion or timeout. For
a given reach to a target, success is defined within strict
positional (1.00 cm) and rotational (0.02 rad, or 1.14°)
thresholds, and the timeout is 90 seconds. For the ADL tasks,
experimenters follow codified guidelines to determine when
tasks are completed with a task timeout of 3 minutes. Over
the course of the study, data from a total of 400 center-out,
400 sequential, and 250 3D-star reaching trials are gathered,
as well as from 80 ADL task trials.

Performance metrics. To evaluate the study’s reaching tasks
and ADL tasks, we define the following performance metrics:

• Success rate

µS =
1

N

N∑
n=1

1{S}n
, (1)

where

1{S} =

{
1, task success
0, otherwise,

N is the total number of trials, and 1{S}n
is an indicator

function that summarizes task success.
• Successful completion time

tc = 1{S}(tend − tstart) (2)

• Average number of collisions

µcollision =
1

N

N∑
n=1

1{C}n
, (3)

where 1{C}n
is an indicator function that summarizes

task collisions.



• Normalized path length in a given reach

ℓpath
ℓstraight

=

∑M−1
m=0 ||xm − xm+1||22
||xtarget − xstart||22

, (4)

where M is the total number of samples (fs = 10
Hz), xm is the end-effector pose at the mth sample,
and xstart = x0.

• Average proportion of time spent within k percent of
reach distance

µτdist≤k
=

1

N

N∑
n=1

τdist≤k,n, (5)

τdist≤k =
tdist≤k

tend − tstart
,

where k ∈ [0, 100]%. Note, we can substitute dist ≥
100% to compute this beyond 100% of the reach
distance (τdist≥100%).

Questionnaires. The NASA task load index (NASA-TLX) is
an assessment tool to measure subjective workload in human-
machine interfacing contexts [21], and is administered at the
end of each session.

IV. RESULTS

We report results from the two evaluation tasks: sequential
reaching (3D-star task) and activities of daily living (four
ADL tasks). Our results find the manner of control space
mapping (TS control versus JS control) to play a major role
in both task performance and perceived workload.

A. Task Performance

Fig. 2: Success rate (left) and trial time (right) for ADL
tasks on first and last days. Grayscale dots represent the mean
value for each participant (TS: dark; JS: light), and the dotted
line (right) represents a timeout of 180 seconds. The standard
interquartile ranges are shown. ∗p < 0.05.

More Intuitive vs. More Learnable. The performance
results from the ADL tasks are shown in Figure 2. Over
five days, we observe that both the TS group and JS group
do improve in success rate. The initial performance of the
joint space group (JS) is superior to that of the task space
group (TS)—specifically, on day 1, the JS median success
rate is higher (p < 0.05, Wilcoxon signed-rank test) and
median trial time is lower. However, only TS demonstrates
statistically significant improvements, between days 1 and 5,
in success rate (p < 0.01) and trial time (p < 0.01). Thus, TS

Fig. 3: Average number of collisions during the 3D-star task
over five days. Standard deviation is shown. ∗p < 0.05,
∗∗p < 0.01.

Fig. 4: Proportion of time the robot end-effector spends
within 10% of reach distance (green) and outside of 100%
of reach distance (red) in the 3D-star task. The standard
interquartile ranges are shown. ∗p < 0.05, ∗∗p < 0.01.

control appears to have a greater capacity for improvement,
as measured by task success and trial time, while JS control
demonstrates greater success with naı̈ve use.

Similarly, despite a noticeable early superiority in JS, on
day 1, TS is able to reduce their number of collisions,
compared to JS (days 1–4, p < 0.05; Kruskal-Wallis H-
test), while collision numbers remain largely static for JS
(Figure 3).

More (Room for) Improvement. Next, we evaluate success
on the sequential reaching (3D-star) task. We examine how
much time participants spend in workspace regions of in-
terest: specifically, the proportion of time spent within 10%
of the reach distance (τdist≤10%) and beyond 100% of the
reach distance (τdist≥100% or farther from the target than is
the starting position).2 The results are shared in Figure 4.
Note that while for an ideal reach τdist≥100% would be zero
and τdist≤10% minimized, during learning an increase in
τdist≤10% is a marker of improvement when targets are not
yet achievable.

We observe that, on day one, both groups spend more
time beyond the starting distance (TS: 18 s; JS: 1.8 s) than
near the targets (TS: 0.31 s; JS: 1.2 s). Both TS and JS

2A simple binary result of success is not informative, as no participants
achieved the target location within our positional (1.00 cm) and rotational
(0.02 rad or 1.14°) constraints on success. We also find the proportion
of time metrics to be more informative than path length, for which no
discernible trends emerge.



Fig. 5: Comparison of subjective workload, measured via
NASA-TLX, between study groups. Evolution of NASA-
TLX scores over study sessions. The standard interquartile
ranges are shown. ∗p < 0.05.

groups significantly improve the amount of time spent near
the targets (τdist≤10%) between days 1 and 5 (p < 0.05;
Kruskal-Wallis H-test). TS also significantly reduces how
much time is spent beyond the starting distance (τdist≥100%),
between days 1 and 5 (p < 0.05), whereas this stays static
in JS, largely due to having less room to improve.

B. Perceived Workload

A Different Sort of Learning. Figure 5 shows the NASA-
TLX assessment and the evolution of scores for subjective
workload across sessions. We observe a marked reduction
over sessions in perceived workload (median NASA-TLX
score) for the JS group. By contrast, we observe only a
slight decrease in perceived workload for the TS group.
Furthermore, the perceived workload of the JS group is
consistently lower than that of the TS group across days,
and even on day one, when the JS group’s performance also
was higher.

To evaluate statistical significance between the two groups,
we initially use the Kruskal-Wallis H-test to find a main
effect, and Conover’s post hoc pairwise test, with Bonferroni
adjustments, to make appropriate corrections. Only on days
one and four do we find statistically significant differences
between the two groups (p < 0.05).

We recall that the JS group did not improve much ac-
cording to either of the ADL task performance metrics of
success or trial time. While the JS group does not improve
significantly in task performance, the group does improve in
perceived workload—which perhaps is indicative of learning,
albeit of a different sort than task performance learning (or
at the very least familiarization).

We also perform a linear regression analysis between
NASA-TLX scores and ADL task performance (success rate
and trial time) and find that there are no strong correlations.

Learning Takes Work. The TS group does not improve
measurably with respect to perceived workload. This group,
however, does improve according to both performance met-
rics, of success and trial time. Thus, a possible explanation
is that the gains in performance are expensive to acquire—
simply put, learning takes work.

V. DISCUSSION

For individuals with paralysis, body-machine interfacing
offers a promising path to increase agency, by enabling them
to directly teleoperate high-dimensional assistive robots. To
operate a BoMI requires learning a remapping of body move-
ments to robot control signals. We have demonstrated this
remapping within a 6D space to be learnable by an uninjured
population, who were able to perform ADL tasks in five
days under both control space mappings. Furthermore, this
demonstration of 6D operation challenges the dimensionality
mismatch problem that so often presents in the direct control
of robotic arms, allowing for continuous and simultaneous
operation of all robot control dimensions via the interface.

A focal question for our exploratory study was the feasi-
bility of human learning to control high-dimensional robots,
continuously and simultaneously, using a BoMI. Although
several prior studies [6] had demonstrated the ability of
people with severe paralysis to use a BoMI to complete 2D
control tasks (without robot autonomy), other work had high-
lighted how challenging the control of additional degrees-
of-freedom can be, where 3-DoF control took 2–4 times
longer to learn than 1- or 2-DoF control, in a simple virtual
reaching task [9]. Therefore, the overall learning burden was
expected to be nontrivial, especially given the novelty of the
interfacing and the non-anthropomorphic robotic arm.

We furthermore have found that a multi-session study was
necessary to tease out our learning results. That is, a one-
session study would have shown evidence that JS control
was superior to TS control in operating high-dimensional
robots with a BoMI, and that TS control was unlearnable
(Figures 2, 3, and 4). Instead, over five sessions, we have
observed that TS control in fact was more learnable than JS
control, which remained largely static over time. It moreover
is likely that the TS group’s task performance would have
continued to improve in a longer study and that we have
not yet shown the full capability of human learning on
this system. We expect that further gains might be possible
with a more regimented learning curriculum that further
customizes the presentation of tasks and control access to
each individual. Where the inflection point exactly lies on
the human learning curve in TS control remains a topic for
further investigation.

Our analysis of the role of control space mappings in
learning high-dimensional BoMI and robot control has pro-
vided evidence that these mappings lead to different learning
profiles (Figures 2, 3, and 4). A possible explanation for why
participants in the JS group initially intuit robot control more
is the comparative simplicity of single-joint movements. A
similar phenomenon is observed in patients with cerebellar
ataxia, where lesions in the cerebellum cause patients to
think out individual joint movements rather than being able
to coordinate multi-joint movements [22]. In addition, the
TS group is forced to also learn the forward kinematics of
the robotic arm (whereas the JS group did not).

Not only do the learning profiles differ with respect to
task proficiency, they also differ in regards to what was



learned. We typically assess learning with respect to task
performance. Equally important within the field of assistive
and rehabilitation robotics, however, is the burden on the
human operator. Learning to interface with the robot with a
lower workload also is learning, and it achieves one of the
driving motivators for the development of assistive robots.
Broadly, this is critical when such robots have had a history
of acceptance issues [1].

Lastly, a significant limitation to this work is that our
investigation considers only uninjured populations. Recall
that the key motivation for this work was to obtain a baseline
understanding of the feasibility, scalability, and learnability
of high-dimensional robot teleoperation using a BoMI. While
the BoMI previously had been shown to be effective at
adjusting to the available residual movements in patients
with cSCI (for 2D control) [6], questions related to the
ability of human users to learn to teleoperate a robotic
arm in high-dimensions using a BoMI, and whether control
space mappings have any effect towards facilitating learning,
were unanswered. Having now determined a baseline for
human learning, our next steps will be to build on this work
and apply the gained knowledge to a diverse population of
patients with severe SCI, in longer studies.

VI. CONCLUSIONS

Individuals with paralysis can benefit from assistive
robotics and body-machine interfaces that help contribute to
the return of their functionality and independence. In this
paper, we share insights from a multi-session exploratory
study that integrates body-machine interfacing with a high-
dimensional assistive robot and investigates human learning
to control this system. Our most significant finding was the
impact of the control space mapping from interface to robot
control. While joint-space control was found to be more
intuitive prior to training, task-space control was subject to
greater improvement over time and thus presented as more
learnable with respect to task proficiency. That said, work-
load reduction is another critical aspect to human learning to
interface with robots, and, in this regard, joint-space control
exhibited superior learning capacity. Therefore, there appears
to be a trade-off between intuitiveness and learnability when
comparing the two control space mappings. Both of these
learning curves merit further investigation—with patients
with motor impairments and with longer studies—that more
deeply probe their potential points of inflection and plateaus.
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