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Abstract— We present an assistance system that reasons
about a human’s intended actions during robot teleoperation
in order to provide appropriate modifications on unintended
behavior. Existing methods typically treat the human and
control interface as a black box and assume the measured
user input is noise-free, and use this signal to infer task-
level human intent. We recognize that the signal measured
through the interface is masked by the physical limitations of
the user and the interface they are required to use. With this
key insight, we model the human’s physical interaction with
a control interface during robot teleoperation, and distinguish
between interface-level intended and measured physical actions
explicitly. By reasoning over the unobserved intentions using
model-based inference techniques, our assistive system provides
customized modifications on a user’s issued commands. We
validate our algorithm both in simulation and with a 10-person
human subject study in which we evaluate the performance
of the proposed assistance paradigms. Our results show that
the assistance paradigms helped to significantly reduce task
completion time, number of mode switches, cognitive workload,
and user frustration, and improve overall user satisfaction.

I. INTRODUCTION

One of the most promising application domains for shared
human-robot control is assistive devices. In this domain,
robotics autonomy collaborates with a human in the opera-
tion of their assistive device, with the aim of increasing that
human’s independence and safety. In addition to its utility as
a control signal, the human’s input often is used in various
other capacities by the robotics autonomy, such as input to
an inference engine. Deviations—in magnitude, direction, or
timing—between the true signal intended by the human and
that received by the autonomy thus can have rippling effects
throughout the control system. Critically, within this domain,
the source of the human’s signal overwhelmingly is treated
as a black box. However, not only might the human’s issued
signal be dramatically impacted by their motor impairment,
limitations of the interface accessible to them to operate the
assistive device often mask their true signal intent. We posit
that to consider the source of the human control signal, and
its influence on the correctness of the signal issued, is critical.

When a person is fit for a powered wheelchair, arguably
the most ubiquitous powered assistive device, the seating
clinician will choose the control interface based on the
user’s unique physical abilities and constraints. Operating a
control interface requires the human to physically activate the
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interface—whether via button press, joystick deflection [1],
screen tap [2], or even electrical signals issued by muscles [3]
or by the brain [4]. The signal which results then is mapped
to the control space of the device. Neither this activation,
nor this mapping, typically is represented within a robotics
autonomy system. Instead, the robot control signal which
results is represented in isolation—independent of the ac-
tivation or mapping mechanisms. However, prior work has
shown the type of control interface to significantly effect
the timing, transient noise, and accuracy of a signal issued
to operate an assistive device [5]. Moreover, when used
in partnership with robotics autonomy, when the autonomy
is not aware of such interface usage characteristics as the
activation and mapping mechanisms, the overall performance
of the shared-control system degrades [5]. The suggestion
is of a need for explicit modeling of the user’s physical
interaction with the interface, and that interface-awareness is
a key component to the design of successful assistive shared-
autonomy algorithms.

In this work, we introduce a mathematical model that
formalizes the human’s physical interaction with the interface
and then use this model to provide customized adjustments
on their issued commands within a shared-control frame-
work. Specifically, our contributions are threefold:

a) Modeling the User’s Physical Interface Operation:
We mathematically formulate the user’s physical interaction
with the control interface during teleoperation—specifically,
how intended user inputs are altered through the interface
before being measured by the system. We use data collected
from the person to build user-specific models of control
mapping and stochastic deviations from intended commands
to personalize the modulating assistive algorithms.

b) Model-Based Inference of Intended Input: Using
the interface-aware physical interaction model and prior
knowledge of the user’s high-level behavior, we employ
probabilistic reasoning over latent intended user control
commands to deduce unintended deviations from optimal
behavior. Notably, the strength of our method is that it
does not require any additional sensor streams for improving
prediction accuracy.

c) Customized Corrective Assistance: We formulate
two methods to provide appropriate modifications to the
measured human control input in an online fashion. The
assistance algorithm is personalized to the user because the
user-specific probabilistic models encode the idiosyncrasies
of a particular user’s interaction behavior with the robot.



II. RELATED WORK
User Input Noise. Deviations between intended and pro-

duced human motions have been extensively studied [6], [7],
[8] and can arise due to cognitive as well as physiological
factors [9]. For motor-impaired people, inherent physical
limitations can increase the likelihood of accidental devia-
tions from intended commands, which can lead to unwanted
robot behavior. Therefore, in a shared-autonomy system it
is important for the autonomy to make decisions based on
intended, as opposed to measured and executed, interface
actions to improve the quality of the interaction: thus, the
need for command-level intent inference.

Command-level Inference. Most research aimed at ad-
vancing teleoperation systems has focused on creating novel
devices that improve upon various aspects of the teleoper-
ation system, such as improved signal decoding in a brain
machine interface [10], haptic feedback for increased trans-
parency [11], or improved fixed mappings from user inputs
to control commands in a redundant body machine inter-
face [12]. Little work in assistive robotics has distinguished
between the intended versus produced command signal mea-
sured through the interface. Work in driver behavior model-
ing has investigated higher-level (action-level) inference, for
example, to classify and predict driver actions [13]. Another
work considers the uncertainty in human grasp intent to
provide appropriate autonomous robotic grasp plans [14].
Unlike our work, they assume the human is physically
capable of producing intended commands and the source
of uncertainty is due to detection noise. Previous work has
modeled a person’s internal beliefs about a dynamic system,
and uses an internal-to-true dynamics transfer function in
order to provide the assistance that leads to a desired human
action or learning outcome [15], [16]. In these works it is
assumed that any suboptimal human command is due to a
mismatch between their internalized and the true dynamics
model, plus there is no control sharing—the autonomy alone
is issuing commands based on the inferred user intent.

Intent Inference for Shared Control. Shared-control
assistive systems often require a good estimate of the user’s
intent—which could be a high-level goal such as a navigation
landmark to drive a wheelchair towards or an object to grasp
using an assistive robotic arm [17]. Bayesian inference based
approaches are widely used in the context of shared control
in which the user is modelled as a Markov Decision Process
and is assumed to be noisily optimizing some cost function
with respect to a high-level goal [18], [19]. In this work we
take a more fine-grained approach to modeling teleoperation,
in which we explicitly distinguish the intended and measured
interface-level physical actions.

III. MOTIVATION: INTERFACE-AWARE SIGNAL
INTERPRETATION

We postulate that modeling how physical actions are
mapped to task-level actions and how the control signal is
then altered through the interface will help the autonomy to
reason about deficiencies in human teleoperation in order to
improve the quality of robot teleoperation.

(a) (b)

Fig. 1: (a) Trajectory following performance. (b) Response
time to prompted command. The notation ∗ implies a p-value
of p< 0.05, ∗∗ implies p< 0.01, and ∗∗∗ implies p< 0.001.

We investigate the extent to which the physical activation
mechanism and the mapping paradigm of an interface explain
differences in usage characteristics. To that end, we perform
a pilot study using three common interfaces employed by
powered wheelchair users—namely, a joystick, headarray,
and sip-n-puff (SNP). We evaluate the operation of these
interfaces on two open-source computer game tasks designed
to assess trajectory and command following performance [5],
[20]. To understand the effect of how the signal is altered
through the interface, in addition to the most common
mappings, we also remap the joystick and headarray to
match the constraints of the SNP interface. This is the
only direction of remapping possible because the joystick
and headarray are higher dimensional than the SNP. The
results indicate that even though the physical mechanism
of providing input is different, when the control mappings
are similar, the usage characteristics are normalized across
the interfaces (Figure 1). Moreover, under the constrained
mappings the performance characteristics under joystick and
headarray interfaces suffer, which motivates the need for an
interface-aware assistance system that will compensate for
the degradation in overall human-robot team performance.

Our approach to interface-aware signal interpretation is to
explicitly model both how the physical actions are mapped
to the task-level actions through the interface and how the
user signal is stochastically altered through the interface.

IV. MATHEMATICAL FORMALISM

In this section we describe our mathematical model of the
user’s physical interaction with a control interface during
manual teleoperation, and the assistive algorithm which uses
our model to provide customized assistance.

A. Modeling the User’s Physical Interface Operation

Figure 2 depicts the generative probabilistic graphical
model of a user’s physical interaction with a control interface
during robot teleoperation at a single time step t.

Let wt represent the true world state, ot the partial observa-
tion of the world state, and st

h ∈S the human’s internal state
that encodes the human’s goals and beliefs. Let at denotes
the action primitives that are defined in the task space (e.g.,
‘move forward’, ‘move backward’, et cetera) that the user
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Fig. 2: Probabilistic graphical model depicting user-robot
interaction via a control interface. Teleoperation is typically
modeled simply as at → ut (dashed edge). We additionally
capture physical interaction with the interface (green nodes).

intends to execute and φ t
i ∈Φ denote the intended interface-

level physical action initiated by the user, that aims to achieve
at and is unobserved. The set of available interface-level
physical actions depends on the physical modality used for
activating an interface. For example, SNP interface actions φ t

i
include ‘Hard Sip’ and ‘Soft Puff’. The measured interface-
level physical action, φ t

m ∈ Φ, is fully observed. The low-
level control commands issued to the robot is denoted as ut .
The mapping between φ t

m and ut is typically fixed.
The novel contribution of this model is in (a) the explicit

modeling of the interface-dependent physical mechanisms
that generate ut and (b) in distinguishing the latent φ t

i
from the measured φ t

m. In a noise-free setting, φ t
i and φ t

m
are equivalent. However, in practice, φ t

m may deviate from
φ t

i due to biases resulting from motor-impairment, stress,
or equipment malfunction, to name a few. Modeling this
distinction is important because the user desires φ t

i to cause
the transition in the world state, whereas in reality φ t

m causes
the transition, potentially into undesirable world states. An
additional potential confound is faulty memory retrieval of
the user’s learned understanding of the inverse controller f
that maps at → φ t

i , which might occur due to time pressure,
mental fatigue, or attention deficit [21], [22].

B. Estimation of at from Measured φ t
m

We are interested in the following question: given the
measured interface-level physical action issued by the user
φ t

m and the task context, what is the probability distribution
over the task-level action primitives at? More precisely,
we are interested in the probability distribution p

(
at |φ t

m
)
.

Concretely, using Bayes theorem, we have

p
(
at |φ t

m
)

∝ p
(
φ

t
m|at)p

(
at) (1)

and marginalizing over φ t
i results in,

p
(
φ
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Due to the conditional independence of at and φ t
m Equation 2

becomes
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and plugging Equation 3 into Equation 1 we have,
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where η is the normalization factor. We also have
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and combining Equation 5 with Equation 4 gives us
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(6)
Each one of the three conditional probability distributions
that appear in the right hand side of Equation 6 have
intuitive interpretations. p

(
at |st

h

)
is the control policy the

user follows during task execution. With training, practice,
and learning, the user’s policy will typically converge to
an optimum—with respect to an internal cost function [23],
[24], [25]. p

(
φ t

i |at
)

captures the user’s internal model of the
true mapping (denoted as f ) from task-level action primi-
tives to the intended interface-level physical actions. Users
acquire this internal model of f via training [26]. Finally,
p
(
φ t

m|φ t
i
)

captures the stochastic deviations of the measured
interface-level physical actions from the intended interface-
level physical actions and is the user input distortion model.
These conditional probability distributions are user-specific
can be learned from user teleoperation data.
C. Customized Handling of Unintended Physical Actions

The motivation for our framework described in Section IV-
B is to improve the control of complex robotic machines with
limited interfaces used by people with motor-impairments.
Equation 6 can be used within a shared-control assistive
paradigm to infer the human’s true task-level intent and, if
necessary, provide adjustments to reduce the cognitive and
physical burden of unintentional deviations during interface
operation. The inference scheme is outlined in Algorithm 1.
Using Equation 6, at every time step t we compute the
likelihood of at ∈ A conditioned on the observed φ t

m (line
2). The action primitive corresponding to the maximum
of the distribution is inferred to be the intended action
at

in f erred , and using the true control mapping function f we
compute φ t

in f erred (lines 3-4). In Algorithm 2, the autonomy
intervenes only if (a) φ t

in f erred is different from φ t
m and (b)

the uncertainty of prediction, computed as the entropy H
of the distribution, is less than a predefined threshold ε .
Otherwise, φ t

m will be passed through the pipeline unaltered.
The appealing characteristic of our proposed control-sharing
algorithm is that the user is maximally in control, which
potentially can improve user satisfaction and acceptance [27].
This is important for reasons of user adoption and cost.
Furthermore, when the autonomy steps in, it does so only
to provide commands closest to the user’s true intentions
(which they were unable to issue correctly themselves).

We implement and evaluate two assistive shared-control
paradigms.

1) Filtered autonomy: If φ t
m is deemed as unintended with

certainty, filter (block) this command, φ t
corrected = 0, i.e., no

motion or mode-switching occurs.



Algorithm 1 Infer Intended Commands

1: function INFER INTENDED COMMAND(t,φ t
m)

2: infer intended command
3: compute p

(
at |φ t

m
)

. equation 6
4: at

in f erred ←− argmax
(
(p
(
at |φ t

m
))

5: φ t
in f erred ←− f

(
at

in f erred
)

. true control mapping
6: return φ t

in f erred

Algorithm 2 Handle Unintended Commands

1: function HANDLE UNINTENDED COMMANDS(t,φ t
m)

2: φ t
in f erred = INFER INTENDED COMMAND(t,φ t

m)
3: if φ t

in f erred 6= φ t
m then

4: if H
(

p
(
at |φ t

m
))

< ε then . uncertainty is low
5: if filtered then
6: φ t

corrected = 0
7: else if corrective then
8: φ t

corrected = φ t
in f erred

9: else
10: return φ t

m
11: else
12: return φ t

m
13: return φ t

corrected

2) Corrective autonomy: If φ t
m is deemed as unintended

with certainty, correct this command, φ t
corrected = φ t

in f erred ,
i.e., resulting in the inferred intended action.

V. SIMULATION-BASED ALGORITHM
EVALUATION

In order to gain a deeper insight into how different hyper-
parameters—such as noise levels in p

(
φ t

i |at
)

and p
(
φ t

m|φ t
i
)
—

affect the performance of our assistance paradigm, we design
a simulation-based experiment. We choose a path-navigation
task for this evaluation and assume that an SNP interface
is being used for robot teleoperation. The domain of task-
level and interface-level actions for an SNP are defined in
Section VI-A. Task-level action primitives (at ) and intended
interface-level physical actions (φ t

i ) are sampled from the
generative model shown in Figure 2. φ t

i is corrupted accord-
ing to p(φ t

m|φ t
i ) to generate φ t

m.
In our simulations, the distributions p(φ t

i |at) and p(φ t
m|φ t

i )
are modeled as mixture distributions comprised of a delta
and a uniform distribution. The weight factor (wuni f orm)
used for the mixture distributions is treated as a scalar
simulation parameter.1 The choice of mixture distributions
for the simulation experiments helps to reveal the operation
domain of the algorithm (rather than precisely corresponding
to real-world distributions of p(φ t

i |at) and p(φ t
m|φ t

i )). Table I
indicates the ranges of all simulation parameters.

We evaluate the performance of our assistance algorithm
as measured by the total number of state transitions during a
trial, under different assistance conditions. Figure 3 reveals
that a more accurate internal model (where p(φ t

i |at) has
low corruption noise), in general, will help the user to

1wuni f orm = 0.0 and wuni f orm = 1.0 denote a pure delta and uniform
random distribution, respectively.

Parameter Range of Values
N - Number of Turns [1,2,3]
Assistance Type [Filtered, Corrective, No Assis-

tance]
wuni f orm in p(φi|a) [0.1, 0.3, 0.5, 0.7]
wuni f orm in p(φm|φi) [0.1, 0.3, 0.5, 0.7]

TABLE I: Ranges of different simulation parameters.

(a) (b)

Fig. 3: Total number of state transitions for two different
noise levels in p(φi|a) - 0.1 (left) 0.7 (right).

perform better. For a given p(φ t
i |at), the corrective assistance

paradigm has the highest performance, followed by filtered
and no-assistance. The difference in performance between
the assistance paradigms decreases as the noise in p(φ t

i |at)
increases, illustrating the need for proper training and acqui-
sition of accurate internal models. These insights guide our
experimental design explained in detail in the next section.2

VI. EXPERIMENTAL DESIGN

We ran a human-subject study (n = 10) to evaluate our
inference algorithm and assistance paradigms in terms of
overall task performance and user preference. All participants
gave their informed, signed consent to participate in the ex-
periment which was approved by Northwestern University’s
Institutional Review Board. Each study session consisted
of three phases. Phase 1: Training and data collection to
model p

(
φ t

i |at
)
, Phase 2: Training and data collection to

model p
(
φ t

m|φ t
i
)
, and Phase 3: Assistance evaluation phase

in which the subjects controlled a 3D point robot using the
SNP interface under three distinct assistance conditions.

A. Experimental Testbed

For the evaluation task, we designed a simulated nav-
igation environment with three control dimensions (Fig-
ure 4) [28]. Participants operated a 1D SNP interface, for
reasons of difficulty and accessibility—this often is the only
device accessible to those with severe motor impairments.
The subjects used the SNP to operate a 3D point robot’s
motion along x, y or θ dimension, one at a time.3 The set
A of task-level action primitives consisted of (a) clockwise
mode switch, (b) counter-clockwise mode switch, (c) positive
direction motion, and (d) negative direction motion. The set

2Additional simulation results are included in the supplementary video.
3The dimensionality mismatch between the interface and the robot

necessitates the control space to be partitioned into smaller subsets called
modes. Motion is restricted only along those dimensions that belong to the
currently active mode. The user can use the interface to activate different
modes by switching between them, and this is referred to as mode switching.



Fig. 4: An example trial in the human-subject study navi-
gation environment. Feedback regarding the current active
mode was displayed on the screen (on the top right corner).

Φ of interface-level physical actions available for a sip-and-
puff were (a) hard sip, (b) soft sip, (c) hard puff, and (d)
soft puff. The true correspondence between at and φ t

i was
deterministic (denoted as f (·)) and predefined.

B. Learning Personalized Distributions

We designed two tasks to capture the personalized distri-
butions p

(
φ t

i |at
)

and p
(
φ t

m|φ t
i
)

from user data.
1) Personalized Internal Control Mapping Model: Partic-

ipants were first trained on the true mapping ( f (·)) during a
standardized training phase. The training consisted of three
phases: (a) learning about the action primitives (at ) for the
3D experimental task-space (Figure 4), (b) learning about
the interface-level physical actions (φ t ) available through
the interface, and (c) the mapping between φ t and at . The
training was followed by six blocks of testing trials. During
testing, the user was shown a graphical depiction of at , and
instructed to select the correct φ t . Each testing trial had a
time limit of five seconds. The subjects repeated the training
and the testing protocol until they met a minimum level
of proficiency. The distribution p

(
φ t

i |at
)

was modeled using
data collected during the testing phase.

2) Personalized User Input Distortion Model: Participants
were trained on the operation of the interface in order to
ensure a good understanding of physical aspects of using the
interface. During training, participants were asked to issue
different interface-level actions and were provided feedback
on how they performed. During testing, the user was shown
an interface-level action on the screen (e.g., “Soft Puff”) as
a prompt and asked to generate the same action through the
interface, with no feedback on performance. Each trial had
a time limit of five seconds. The distribution p(φ t

m|φ t
i ) was

modeled using the data collected during this testing phase.

C. Assistance Evaluation

In the evaluation task, the subject controlled the motion of
a 3 Degrees-of-Freedom (DoF) point robot along predefined
paths from a start pose to a goal pose. For each trial,
the start and end positions were randomized. The initial
control mode was selected at random, and restricted to be
different than the mode corresponding to the optimal first
action in order to normalize the difficulty of starting the
trial in different configurations and ensure balance across
action types. Users performed the evaluation task under
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Fig. 5: Objective task performance metrics grouped by
assistance condition. (a) Total trial time with maximum trial
time capped at 50s. (b) Distance to the goal at the end of
trials. (c) Percentage of successful trials. (d) Total number of
mode switches during successful trials. All metrics improve
significantly with the corrective assistance condition.

three conditions: (1) no assistance, (2) filtered assistance,
and (3) corrective assistance. The subject was required to
rotate the point robot to the target orientation at one of the
corners (highlighted in violet). Subjects were prompted to
complete the task with the least number of mode switches
and in a timely manner. A trial was deemed successful if
the robot was at the goal pose within the allotted time limit
(50 seconds). Subjects performed six blocks (two blocks per
assistance condition) of six trials each. In total, we collected
360 trials (120 trials per assistance condition). After each
block, the subjects were required to respond to a NASA-TLX
questionnaire. At the end of the final block, the subjects filled
out a post-session survey in which they rank-ordered the
different assistance conditions according to their preference,
intuitiveness, helpfulness, and difficulty.

VII. RESULTS

We analyze group performances using the non-parametric
Kruskal-Wallis test and perform the Conover’s test post-hoc
pairwise comparisons to find the strength of significance.4

A. Objective Task Performance Metrics

To evaluate the effectiveness of our algorithm on overall
task performance, we compare (1) the total task completion
times, (2) the distance to the desired goal position and
orientation at the end of each trial, (3) the percentage of
successful trials under each assistance condition, and (4) the
total number of mode switches for successful trials, across
the three assistance conditions (Figure 5).

4For all figures, ∗ : p < 0.05, ∗∗ : p < 0.01, and ∗∗∗ : p < 0.001.



As seen in Figure 5a, the total trial time is shortest
under corrective assistance, increases with the no assistance,
and is largest under the filtered assistance paradigm. One
likely reason for the latter observation is that under filtered
assistance, the repeated issuance of suboptimal mode switch
commands is repeatedly blocked, while under no assistance
consecutive suboptimal mode switches are executed and po-
tentially end in the desired control mode. For example, in our
experimental setup, two counter-clockwise mode switches is
equivalent to a single clockwise mode switch, and vice versa.

Figures 5b-5c show the distance to goal at the end of
the trial and the percentage of trials successfully finished
by each subject, respectively. Both of these metrics improve
significantly under the corrective assistance condition.

The filtered and corrective assistance paradigms are com-
parable when looking at the total number of mode switches
during successful trials (Figure 5d). Both assistance con-
ditions are optimal with respect to the number of mode
switches, which is five for all trials. Under no assistance,
despite successful task completion, the number of executed
mode switches is up to three times the optimal number.

B. Subjective Task Performance Metric
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Fig. 6: Perceived workload mea-
sured by the NASA-TLX score,
grouped by assistance condition.

We use the raw NASA-
TLX as a subjective mea-
sure of perceived work-
load [29]. Larger TLX
scores indicate higher per-
ceived workloads. During
corrective assistance, the
autonomy offloads some
of the cognitive burden
by correcting unintended
actions—as evident by the
significant reduction in
the user’s perceived workload (Figure 6). During filtered
assistance, although the autonomy gives feedback by way
of blocking unintended actions, the user is still responsible
for issuing all correct commands.

C. User Acceptance of Assistive Autonomy

We evaluate user preferences and acceptance of our
shared-control assistive paradigms using a questionnaire
(Figure 7). The statements are rated on a 7-point Likert scale
from strongly disagree (1) to strongly agree (7). Although
some of the objective measures of task performance between
filtered assistance and no assistance are comparable, the
users rate that the filtered assistance helps them complete the
task more efficiently and is easier to operate than under no
assistance. Overall, the participants show a strong preference
for the corrective assistance.

VIII. DISCUSSION AND IMPLICATIONS

Our results suggest that each of the assistance paradigms
have unique advantages that are crucial for end users of
assistive devices. In particular, since the filtered paradigm
blocks all user inputs that do not correspond to optimal

Fig. 7: Average user response to post-task questionnaire. The
bars indicate standard deviation.

actions, a user operating the interface under this condition
can learn to issue the correct commands. This paradigm can
potentially be used within a rehabilitative setting with various
methods of feedback as a teleoperation training paradigm to
assist in maximal skill acquisition. By contrast, the corrective
paradigm might help users who have plateaued in their
skill in operating the interface, or in cases where efficient
and successful task completion is critical. A person with a
recent motor impairment could begin to operate an assistive
device earlier in their rehabilitation journey with corrective
assistance, thereby accelerating their mobility independence.
When used in tandem within a shared-control framework,
the proposed assistance paradigms have the potential to im-
prove the quality of device operation while also encouraging
skill development, and making independent operation of the
device more accessible.

In our future work, we intend to explicitly model fatigue
and learning dynamics, and study their impact on each of
the personalized distributions. We also will explore various
synergies that arise as a result of the human operator’s co-
adaptation to the robotic autonomy.

IX. CONCLUSIONS

We have presented a probabilistic graphical model of
user-robot interaction that distinguishes between intended
versus measured user control signals. We introduced two
assistance paradigms that reason about stochastic deviations
in user input in a shared-control framework. The efficacy of
the assistance paradigms were evaluated both in simulation
and via a human subject study. Our results demonstrated
improvements in objective task metrics as well as user
perception metrics.
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