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Abstract— Shared control for human-robot teams—where
both the human and the robot’s autonomy provide commands to
the hardware—offers advantages over fully teleoperated or fully
autonomous systems by utilizing the unique skill sets of both
the human and robot’s autonomy simultaneously. However,
the mechanism by which control is shared is often static and
many teams could benefit from adjusting this mechanism,
such that the human or autonomy alternatively receive more
control authority in different scenarios. The question then is:
how do we know when these scenarios occur? In this paper,
we present a method to estimate the performance of human-
robot teams using a novel metric called Discrete N-Dimensional
Entropy of Behavior (DNDEB). DNDEB utilizes knowledge
of a high-performing human-robot team to build a model of
how the team should operate. The model is used to predict
the human’s command. The error between the prediction
and actual command is tracked and after a certain number
of samples, entropy is estimated. A higher level of entropy
corresponds to deviations from the high-performance model,
which can be interpreted as poor performance by the human-
robot team (e.g., long task time or a collision). Our formulation
offers several advantages: it (1) accepts discrete inputs of any
size, (2) does not require additional sensors, and (3) is tunable
to the specific application. To validate this, we conduct a 15-
person study where subjects operated a powered wheelchair
under three different shared-control paradigms. We find that
entropy is higher for cases with longer task durations and cases
where there is a collision. Moreover, we use DNDEB thresholds
as a mechanism to predict the performance of the human-
robot team online and find an average accuracy of 91% with
a prescience rate of 72%.

I. INTRODUCTION

Human-robot teams often take advantage of shared-control
paradigms where the human and robot both work together
to complete the same task. In shared control, the robotic
hardware is equipped with autonomy to intelligently offload
some of the control from the user. Often the aim in sharing
control is to increase the safety of the user while capitalizing
on benefits of a human-in-the-loop. The advantages of this
collaborative scheme over either using solely a human or
robotic system can be significant.

These teams, however, often perform suboptimally when
their relationship is static and the human interacts with
the robot in the same manner throughout the mission. For
example, the robot autonomy may underperform due to en-
vironmental factors, sensor failure, or computational issues,
to name a few. In such scenarios, the team may benefit by
allocating more control to the human who could override
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faulty autonomy behavior. Conversely, human operators may
become distracted, fatigued, or have varying skills when
interacting with the robot. Now the autonomy could increase
its authority to protect itself from harm. Thus, it can be
beneficial to dynamically adjust the shared-control paradigm.

While examples of shifting the shared-control paradigm
do exist in today’s technologies, most focus on adding au-
tonomous assistance when the user is performing the task un-
safely (e.g., lane assist technology in automobiles). However,
little work investigates automatically adjusting the shared-
control paradigm due to inadequacies in the autonomy’s
performance—instead, often the human is relied upon to
detect the inadequacy and take over. Moreover, autonomous
shifts between discrete formulations of shared-control is
understudied within the literature. In order to autonomously
switch between paradigms, it is necessary to have a reliable
metric to assess real-time performance of the human-robot
team as a whole. Ideally, this metric would not require the
addition of costly sensors and would be adaptable to a variety
of human-robot team combinations.

To fill this gap, we present a novel approach and metric
to predict the performance of human-robot teams using
only the human operator’s input to the system. The met-
ric stems from behavioral entropy, a metric developed to
estimate automobile driver distraction by looking strictly
at the angle of the steering wheel [1]. Our intent is to
assess team performance when operator input also might
be discrete or higher than a single dimension. Towards this
end, we have reformulated behavioral entropy to include
multi-dimensional and discrete signals while improving the
prediction mechanisms using state-of-the-art techniques from
machine learning. We also present an approach to utilize this
metric for human-robot teams and for dynamically shifting
control-sharing paradigms. Our contribution is threefold:

1) We introduce a discrete N-dimensional variant of be-
havioral entropy, named DNDEB.

2) We develop an environment-aware machine learning
algorithm to predict the user’s command.

3) We experimentally validate our approach with 15 hu-
man subjects and three shared-control paradigms.

We first discuss the research that motivated this work in
Section II. Section III covers the formulation of DNDEB and
examples for intuitive understanding. Next, we present the
experimental validation of the algorithm in Section V and
the results of validation in Section VI. Lastly, we discuss
the implications of the results for human-robot teams and
dynamic shifting of autonomy in Section VII.



II. RELATED WORK

Shared control balances the benefits of both a human and
robot partner, and multiple factors play a role in choosing
the correct shared-control paradigm for a given situation [2].
Fortunately, many control sharing strategies exist from which
to choose, each with their own set of advantages [3], and
altering an existing paradigm or shifting between different
paradigms in real-time can leverage the advantages of mul-
tiple paradigms [4]. To adjust parameters within a single
control sharing paradigm, some works show success using
metrics such as distance to obstacles [5] or a notion of
trust-based performance [6]. However to the best of our
knowledge, no works use a metric to shift between multiple
shared-control paradigms.

A dynamic autonomy allocation framework could uti-
lize a plethora of metrics to shift between control sharing
paradigms. Human workload, for example, is an important
measure of operator performance and state in many fields,
including human-computer interaction (HCI), human-robot
interaction (HRI), and human factors research. In the HCI
domain, secondary tasks have been used to infer the op-
erators’ spare mental capacity and therefore their mental
workload [7]. However, the secondary task itself affects
the workload of the human operator and can impede the
human’s capacity to perform the primary task at hand. The
need for non-intrusive and online measures of workload
has led to a large body of work looking at using varying
psychophysiological sensors (including, but not limited to,
heart rate variability, electrodermal activity, eye movements,
and skin temperature) [8]. For this type of workload mea-
surement, additional sensors need to be attached to the
operator. Although technological advances have given way to
wireless sensors that are mostly non-intrusive, these sensors
are still limited by battery power, communication channel,
bandwidth, latency, and jitter [9]. Performance is another
metric of use but it typically requires concept, situation,
and task awareness by the human [10], or alternatively is
estimated from implicit cues, such as trust or disagreement
between the human and the autonomy [11].

Removing the requirement of additional sensors or situ-
ational awareness, Nakayama et al. [1] develop behavioral
entropy as a metric to detect (post-hoc) increased levels of
workload for the driver of an automobile. Their formula-
tion utilizes a 1-dimensional continuous input over a small
window to indicate whether a driver is distracted. More
specifically, they use a prediction of steering wheel angle
and calculate the entropy of the prediction errors over a
window of time. A higher value compared to an undistracted
baseline indicates distraction or increased workload. Later
work further validates the method on a larger dataset with
different forms of workload [12]. Behavioral entropy is
validated further [13] within the human-robot interaction
(HRI) domain using 1-dimensional joystick angle (not mag-
nitude), with positive results. An extension to behavioral
entropy uses an autoregressive model to predict steering
wheel angle [14], and explores other hyperparameters such

as sampling frequency, model parameters, and entropy es-
timation parameters, to show that fine tuning can increase
prediction accuracy. There are many scenarios, however,
where the input from the user is not continuous or 1-
dimensional. For example, tetraplegic powered wheelchair
users typically operate a non-proportional (discrete) 1- or 2-
dimensional interface, such as a series of buttons, rather than
a 1-d continuous joystick. To employ behavioral entropy in
such domains, a reformulation is thus required.

The aforementioned works lay the necessary foundation
for the development of a discrete and higher-dimensional
variant of behavioral entropy and speak to the potential
utility of behavioral entropy within expanded domains. In
this paper, we contribute Discrete N-Dimensional Entropy of
Behavior (DNDEB),1 a method able to provide behavioral
entropy predictions within discrete N-dimensional spaces.
We further contribute a state-of-the-art prediction mechanism
and an evaluation within a compelling use-case domain: pow-
ered wheelchair operation using a limited control interface.

III. DISCRETE N-DIMENSIONAL ENTROPY OF BEHAVIOR

As discussed in Section II, behavioral entropy is a metric
with demonstrated effectiveness in detecting human work-
load by monitoring 1-D, continuous-valued control signals
from the human input [1], [12], [13]. However, there are
many situations where the interface a human uses to interact
with a robot or system is discrete and/or multi-dimensional.
In this paper, we fill this gap with the introduction of Discrete
N-Dimensional Entropy of Behavior (DNDEB).

At a high level, we calculate DNDEB using a window
of the human’s inputs and predict the next input at time t.
The prediction mechanism is designed such that it accurately
predicts the human’s inputs when the team is performing
well. We then compute the error in the prediction and store
it. After a certain number of predictions, we estimate the
entropy of the distribution of the stored errors. Since the
prediction is accurate for high performance, a higher entropy
value indicates poorer performance of the predictor which
correlates with poor performance of the team [13]. For in-
tuition, we can analogize DNDEB to entropy in information
theory, where it represents uncertainty in a signal. In the
case of DNDEB, this is the uncertainty in the prediction
mechanism. The mechanism is trained to accurately predict
the user’s command when performing the task well. The idea
is that the prediction mechanism will be less accurate at
predicting the command when the user is performing poorly,
for example due to distraction or high workload. Higher
uncertainty in the prediction mechanism thus suggests the
team to be operating in a suboptimal state.

Now looking at the specific details of our DNDEB for-
mulation, we start with the discrete inputs and how to
characterize them. The human provides binary input u within
any number (1, .., N ) of N control dimensions at a time,
depending on the limitations of the control interface in use.

1We call the metric entropy of behavior instead of behavioral entropy to
highlight the fact that our work does not reformulate Shannon information
entropy, but rather applies entropy to behavior cues to assess performance.



Fig. 1. Example DNDEB values (Ht) for confusion matrices of a 3-
dimensional discrete input signal (e.g., forward, left, and right). In all 5
examples, N = 3, we = 99. Entropy values increase as the inaccuracy of
the prediction increases (a→ c), with one exception: if the predictor guesses
wrong more often than chance (d). In a-d, the commands are equally likely
to appear (33.3% likely). However, if the one command is more probable
than the others and the model is still accurate (e), the entropy will decrease
below 0.5 which could lead to false positive flags of poor performance.

Mathematically, the input is an N -dimensional vector where
the element corresponding to the active input is one and other
elements are zero. Simultaneous (multidimensional) control
inputs are represented as additional unique DNDEB vector
dimensions. That is, if the potential inputs are left, right, and
forward, it is possible to provide inputs in one dimension
(left, right, forward) or two dimensions (left-forward, right-
forward). This results in three unique inputs (N = 3) for the
1-D case and five unique inputs (N = 5) for the 2-D case.

To calculate the error of the prediction ũ (covered in Sec-
tion IV), we create a N×N confusion matrix C and initialize
all elements to zero. We then update C using a window we

of predicted ũ and true user commands u, where we is a
tunable parameter set based on the domain. Each prediction
is recorded by incrementing a counter in cell C[i, j], where
i is the index of the dimension of the provided control ut,
and j is the index of the dimension of the predicted control
ũt. If ut = ũt (a correct prediction), then i = j which
corresponds to the diagonal elements of C. Similarly, the
non-diagonal elements of a row indicate the count of false
positives for each of the other possible commands. This
confusion matrix encodes how well the discrete predictor
has performed over the window. If the elements of the matrix
are large in the non-diagonal components, the prediction is
poor. Once predictions are aggregated over the window, we
estimate entropy H using the following formula:

Ht(Ct) = −
N∑
i=1

N∑
j=1

P (cij) logb P (cij) (1)

where cij are elements of C and P (cij) is the probability
of cij that we estimate as P (cij) = cij/we.2 A summary of
the calculation is presented in Algorithm 1, where Equation
1 corresponds to Line 7.

Figure 1 presents examples of multiple confusion matrices
C at time t and each is labeled with the instantaneous
DNDEB value. In addition to demonstrating how entropy as
a function of prediction accuracy, these examples also high-

2Equation 1 could be rewritten as a single summation to N2 if the matrix
C is flattened to a [N2×1] vector. This formulation more closely resembles
the tradition entropy formula.

Algorithm 1 Discrete N-D Entropy of Behavior
1: Given: prediction window wp, estimation window we,

and number of inputs N
2: C← 0[N ×N ]
3: while running do
4: ut ← user command . receive the user command
5: ũt = predictCommand(ut−wp

, ...,ut−1)
6: Ct = getConfusionMatrix( ut−we+1, ũt−we+1,

...,ut, ũt)
7: Ht = estimateEntropy(Ct)

light the necessity to monitor the accuracy of the predictor
to correctly interpret the resulting entropy value.

In practice, the DNDEB is calculated over multiple win-
dows and the mean value is used as the metric. The entropy
calculation windows we can be overlapping or independent
of the rate of commands/predictions, depending on the im-
plementation domain requirements.

IV. PREDICTION MECHANISM

As discussed in Section III, DNDEB requires a mechanism
to accurately predict the human operator’s command input.
Here we contribute a prediction mechanism that employs
only the user input in its base formulation, but which also
is able to additionally incorporate sensor information, if
available. The sensor input is simply concatenated to the
end of the N-dimensional DNDEB input vector. Sensor
information can prove useful for interfaces with discrete
inputs because the user’s command is often sparse and might
not encode much information about the next command, and
the sensor readings can contain information about which
commands may be valid. For example, if the sensor detects
an obstacle in front of the human-robot team, a forward
command should not be predicted.

The output of the predictor is a vector of zeros except for
the index corresponding the predicted active control input is
equal to one. A discrete classifier therefore is better suited to
this prediction than a Taylor-series prediction or regression,
as used in prior works [14]. For the predictor itself, we
choose to leverage neural networks (NN) and long short-
term memory networks (LSTM) due to extensive success in
temporal predictions and robotics [15].

The general architecture of our network is shown in
Figure 2. This model utilizes a LSTM to handle the discrete

ConcatenateLSTM

[ut−1, ...,ut−1−wp ] st

NN

up

[wp ×N ]

[1×M ]

[1×Q]

[1× (M +Q)]

[1×N ]

Fig. 2. Neural network architecture. Inputs are green, neural network layers
are blue, operators are yellow, and the output is red. Size of the LSTM output
is M , sensor data is Q (Q = 0 if no sensor data is available), DNDEB
input is N , prediction window is wp.



(a) (b)

Fig. 3. Experimental set-up: (a) wheelchair with electronic head array
system called out (b) task track with 7 tasks.

time-series data (our human inputs u) and a fully connected
feedforward NN to incorporate the sensor information s.
LSTMs are shown to perform well in tasks where the inputs
are discrete vectors with a similar output [16]. Moreover,
researchers have found success in combining LSTMs with
other information, such as sensor or camera information, to
increase prediction accuracy [17]. In our implementation, the
additional sensor information provided to the network is a
series of distance measurements to obstacles (or lack thereof)
surrounding the human-robot team.

V. EXPERIMENTAL DESIGN

The domain of assistive robotics is particularly well-suited
to validate DNDEB because human inputs are often discrete,
and the degree to which a user’s motor impairment affects
their ability to control their device often changes based on
the task, fatigue, pain, and/or the progression/digression of
their impairment. Therefore, users may benefit from varying
amounts of autonomy assistance, and thus shifting formu-
lations of shared control. To that end, we test DNDEB for
different shared-control paradigms on a common assistive
device: a powered wheelchair.

A. Robotic Platform

We conduct the study using a Permobil wheelchair
retrofitted with an on-board computer and two ASUS Xtion
RGB-D sensors on each arm (Fig. 3-a).The control inter-
face is an ASL 105 electronic head array system (ASL,
TX, USA), which is configured as a 2-dimensional discrete
controller. This is a commonly used interface for controlling
commercial powered wheelchairs. The head array consists of
three headrest pads with embedded proximity sensors, and a
chin switch. The lateral pads are used for turning laterally left
or right, and the back pad is used for moving longitudinally.
The chin button is used to switch between whether the back
pad commands indicate forward or reverse motion. The back
pad and lateral pads can be triggered simultaneously, which
results in a total of 9 possible commands: (1) forward, (2)

backward, (3) left, (4) right, (5) forward-left, (6) backward-
left, (7) forward-right, (8) backward-right, and (9) stop, if no
command is being issued.

B. Shared-Control Paradigms
We hypothesize that DNDEB will correlate with the

performance of human-robot teams for a variety of shared-
control paradigms. Thus, we develop three different shared-
control paradigms to assess the versatility of DNDEB:

• Full teleoperation (A0): The executed command is a
direct mapping of the user input—there is no assistance
from autonomy. We include this paradigm because
studies show that users desire more control when they
can control their device effectively [18].

• Obstacle avoidance (A1): The user input is blended
with the input from the autonomous planner solely
to avoid obstacles. We use the obstacle avoidance
paradigm proposed in [19].

• Waypoint planning (A2): The user issues one of the 9
possible commands via the head array. The autonomy
projects the direction of the command based on visibil-
ity (up to 2m) and plans a collision-free trajectory to
that goal. The user may cancel the goal at any time by
pressing the chin button.

C. Experimental Protocol
As a first evaluation of DNDEB, we recruited 15 (9 female

and 6 male) subjects with an average age of 31 ± 9 years
old. The subjects had varying degrees of experience with
robotic systems and powered wheelchairs, but were all naive
to powered wheelchair control with a head array interface.

The experimental protocol consisted of one session with
both a training phase and testing phase. The training phase
was designed for the participants to become familiar with
using the head array interface and the dynamics of the
wheelchair. The test phase included seven tasks: two door-
way traversals, ramp ascent and descent, avoiding a dynamic
obstacle, and traversing a sidewalk with drop-off from wide
and narrow ends. For each shared-control paradigm (A0, A1,
A2), the participants executed all seven tasks in a circuit for
a total of three circuits (Fig. 3-b). The order of tasks within
a circuit and the order of shared-control paradigms were
randomly counterbalanced across all subjects. In total 315
tasks were performed and 105 per shared-control paradigm.

VI. RESULTS

We begin this section by defining high and low perfor-
mance using our metrics of interest. Next, we evaluate the
prediction mechanism on the high-performing cases to ensure
a consistent measure of entropy. Last, we evaluate DNDEB
by looking at averages across trials and test its ability to
predict collisions online.

For the statistical analyses, we perform non-parametric
Kruskal-Wallis tests to check for significance within groups.
If significance exists, we test pairwise using the non-
parametric Mann-Whitney-Wilcoxin test with Bonferonni
correction m. Throughout, we denote statistical significance
of p < 0.05

m as *, p < 0.01
m as **, and p < 0.001

m as ***.



A. Experiment Performance

Using the number of collisions and average completion
time per task, we quantify the safety and performance,
respectively, of the human-robot team. This allows us to
categorize tasks as high performance, low performance, and
unsafe for use in the DNDEB evaluation.

We define high performance as task trials (1) without
collisions and (2) with a task time lower than the median
over all subjects. Similarly, we define low performance as
task trials (1) without collisions and (2) with task times
higher than the median. Finally, we designate trials as unsafe
if a collision occurred. The counts of trials in each quality
category are provided in Table I. The distribution of data
is relatively equal with slightly more samples in the high-
performance classification. This is due to the the fact that
trials with task times above the median also see a collision
more often than those with task times below the median.

B. Discrete Predictor Analysis

Before evaluating DNDEB, we need to determine the
accuracy of the prediction mechanism and ensure the primary
weight of the confusion matrix remains on the diagonal
elements. In our implementation, we choose a prediction
window of 50 samples (wp = 50) as input to the LSTM.
For sensor input s we utilize 10 (Q = 10) distance readings
equally spaced between 0-180o, centered on the wheelchair
facing forward, and ranging from 0-4 meters. We extract
these distance readings from the costmap populated by the
RGB-D sensors. The distance measurement input is directly
concatenated with the output of the LSTM (a vector of size
32) which is then fed into 3 fully connected neural network
layers of size 64 (Fig. 2). We train each model for 50 epochs
with a binary cross entropy loss function. Finally, the result
is the predicted user command ũt.

To validate the network architecture, we perform leave-
one-out cross validation (LOOCV) for each subject. That
is, the network is trained using 14 subjects and we check
its accuracy using the remaining subject’s data. For training
and assessment we only use high-performance trials, because
we are building a predictor of good performance (Sec. IV)
and then detecting deviations from good performance via
model prediction errors. We find that the model accurately
predicts the user’s next command 91.7 ± 6.7% of the time.
Though there is room for improvement, this range results in
informative DNDEB calculations (that is, more weight in the
diagonal elements of the confusion matrix, Figure 1).

TABLE I
TRIAL COUNT FOR EACH QUALITY CATEGORY BY SHARED-CONTROL

PARADIGM

Paradigm Unsafe High Performance Low Performance
A0 27 41 37
A1 21 46 38
A2 28 42 35

A0 A1 A2
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Fig. 4. The average values of all task trials on the one-left-out subject for
DNDEB. For all assistance levels, the entropy value of the high performance
tasks is significantly lower than the unsafe cases. Except for assistance level
2, significant differences also exist between high and low performance and
between low performance and unsafe.

C. Discrete N-D Entropy of Behavior Evaluation

The benefits of DNDEB appear in both post-hoc and real-
time analyses, and we present each in this section.

1) DNDEB Correlation with Performance: We perform
leave-one-out cross validation to assess the accuracy of
DNDEB as an indicator of performance. Using a model
trained on 14 subjects, we calculate the DNDEB metric
on predictions made on the remaining subject’s data. For
this preliminary analysis, we set wp = 50 and we = 30
and average all the DNDEB values calculated for each
window. Figure 4 shows the resulting entropy values for each
label under each shared-control paradigm, averaged over
all subjects. The statistically significant differences suggest
that DNDEB is a useful metric in differentiating between
the quality categories. Referring to the information theory
analogy, the model is less uncertain when making predictions
for high-performance trials—due to the fact that it was
trained on data for high-performance tasks.

2) Real-time DNDEB Analysis: Having established that
DNDEB correlates well with performance for our domain,
we now investigate the evolution of DNDEB over time to
assess its usefulness as an online indicator for shared-control
allocation. This allocation could be handled in a variety of
ways. For example, one possible mechanism is to allow the
user to continue to operate the robot using the current shared-
control paradigm while their DNDEB metric indicates high
performance, and to shift shared-control paradigm or warn
the user if the metric indicates any other quality category.

For an online indicator, we choose a thresholding mech-
anism where the DNDEB metric is monitored, and if it
surpasses a set threshold, we trigger an alert. We also
evaluate how the DNDEB threshold compares to minimum
distance to obstacles (DTO) as an online indicator. While
an intuitive metric for collisions (human-robot teams need
to be close to an obstacle in order to collide with it), DTO



(a) DNDEB Thresholds

(b) Minimum DTO Thresholds

Fig. 5. Normalized confusion matrix of each prediction mechanism for
the shared-control paradigms (A0, A1, A2) and all three combined (Total).

does not necessarily correlate with human operator workload
or distraction, as does behavioral entropy [13]. Minimum
DTO is measured by calculating the euclidean distance to
all obstacles and choosing the minimum value.

To set thresholds for DNDEB, we utilize the data in
Figure 4 and tune empirically. The threshold values for
DNDEB are set to 0.33, 0.33, and 0.28 for shared-control
paradigms A0, A1, and A2, respectively. Using a buffer of
5cm from the wheelchair footprint, we set the threshold of
distance to obstacles to 52cm for all three shared-control
paradigms to achieve the best prediction performance. For
both DNDEB and DTO, we smooth the prediction by using
a mean value over a window of 30 samples.

The results of both collision prediction mechanisms are
presented in Figure 5. Combining over all three shared-
control paradigms, we see the DNDEB threshold method
predicts a collision correctly 91% (67 total) of the time there
is a collision, missing only 9% (7 total). It is worth noting
that there is a large number of false positives at 38% (91) of
tasks without a collision. By comparison, the DTO threshold
predicts true positives with similar accuracy (93%) but an
even larger number of false positives (67%). This is likely
due to the fact that many tasks (such as doorway traversal)
require close proximity to obstacles.

Depending on the domain, a cautious autonomy alloca-
tion framework—one that predicts a large number of false
positives—may be desirable to improve safety. Conversely,
a large number of false positives might prove unacceptable
to the human partner.

In order to be useful for online autonomy shifting with the
aim of improved performance and increased safety, whether
the prediction occurs before an actual collision (prescience)
and how early the prediction takes places (timeliness) is
important. The results for both metrics are presented in Ta-
ble II. We find that on average both metrics provide advance

detection of a collision with a more than sufficient amount of
time for a safety intervention: their advance detection range
(timeliness) is 32.0-63.6s, while the wheelchair itself is able
to cold stop from maximum velocity in under 2s. In other
experimental work, we find an average time of approximately
4s is necessary for a human operator to attain situational
awareness after a shared-control paradigm shift, so even the
lower bound of 32s is quite sufficient to safely perform a
shift (a more elegant response than a hard stop). We do see
that DTO is more successful than DNDEB (88% versus 71%,
averaging the three shared-control paradigms) in predicting
a collision before it occurs (prescience). This aligns with the
earlier findings of DTO being a more cautious metric, with
a higher number of false positives (Fig. 5-b).

VII. DISCUSSION

The results demonstrate the effectiveness of DNDEB as
a post-hoc metric to classify performance and as an online
early indicator of collisions during a task. In this section, we
discuss the likely reasons for the results, limitations of the
work, other potential use cases, and ideas for improvement.

In many scenarios, engineering teams do not have true
labels of performance or collisions for tasks performed
by human-robot teams. Since DNDEB correlates well with
performance labels on average (Fig. 4), researchers can use
this metric to assess their shared-control paradigms post-hoc.
If DNDEB increases over a long period of time, for example,
the team can launch an investigation as to the causes of a
likely suboptimal performance by the human-robot team.

Similarly, it is useful to know beforehand if unsafe be-
havior or suboptimal performance may occur. Averaging the
three shared-control paradigms, DNDEB predicts online a
collision before it occurs 71% of the time with sufficient
time to intervene (40.4s). Though not perfect, this drastically
increases the likelihood of changing operational parameters
to address the situation. The reason prediction does not occur
100% of the time may be the relatively short duration of
the tasks in this study. DNDEB evolves at a slower rate
than other metrics such as distance to obstacles. If DNDEB
is tracked over longer periods of time, it is likely that the
accuracy would increase and changes be more evident. Other
features calculated from the DNDEB metric, such as rate of
change, also might prove useful.

As this is a first analysis of DNDEB, we see many
areas for potential improvement and to deepen understanding
of the metric and technique as a whole. First, the user

TABLE II
PRESCIENCE AND TIMELINESS OF PREDICTIONS FOR DNDEB AND

DTO

Metric Paradigm Prescience (%) Timeliness(s)

DNDEB
A0 77 32.0
A1 68 41.7
A2 69 45.1

DTO
A0 90 40.1
A1 91 57.9
A2 85 63.6



command prediction mechanism might utilize any number
of architectures and techniques. Depending on the domain,
more information—such as task information, sensor data,
or a user profile—might improve, or confound, the model
prediction. DNDEB has a variety of hyperparameters that
can be tuned by the designer (wp, we, model architecture,
DNDEB thresholds, smoothing window size). This work did
not aim to fully optimize these parameters, but future work
will investigate patterns in tuning the parameters to edge out
extra gains in prediction accuracy.

The labeling of data for this work consisted of only one
type of collision; however in reality, the collisions varied in
severity. Some collisions had high risk of injury (driving over
a drop-off edge) while others were minor such as scraping
the doorway with the arm rest. Differentiating between the
severity of collision would be an interesting extension.

Despite the promise of DNDEB, limitations do exist.
First, the approach requires a baseline high-performance
dataset to train the prediction mechanism. Depending on the
complexity of the system and the environment in which it
operates, large amounts of data may be required to train
the model that can accurately and reliably predict a high-
performance user command. Fortunately, simulation might
serve as an efficient method for data collection and should be
investigated further. Similarly, the rates of real-time change
in DNDEB presumably vary between use cases, for example
depending on characteristics of the user interface (such as
sparsity). The experimental results presented here are for
a specific domain and interface, and further validation is
required to establish the ubiquity of this metric.

VIII. CONCLUSION

In this work, we presented a metric that correlates with
performance for human-robot teams where the human pro-
vides discrete, N -dimensional inputs to the system called
Discrete N-Dimensional Entropy of Behavior. Compared to
previous formulations, it offers the ability to use limited
discrete interfaces with multiple dimension inputs, and it
also leverages environment-aware user command prediction.
We validated the metric through a 15-person study where
users operated a powered wheelchair using a limited inter-
face and under three formulations of shared control. We
also demonstrated its potential as a real-time performance
detection mechanism for use in autonomy allocation.

Overall, DNDEB shows promise as a metric for classi-
fying and predicting performance of a human-robot team.
Future work will aim at addressing generalization by testing
with other interfaces (sip-and-puff), other user populations
(spinal cord injured), and different shared-control paradigms.
Additionally, we will evaluate the effect of different hyper-
parameters of DNDEB on accuracy and timeliness.
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