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Abstract The quality of the communication channel between human-robot team-
mates critically influences the team’s ability to perform a task safely and effec-
tively. In this paper, we present a nine person pilot study that investigates the effects
of different degradations of that communication channel, and within three shared-
autonomy paradigms that differ according to how and at what level control is par-
titioned between the human and the autonomy. Accordingly, the rate and granu-
larity of the human input differs for each shared-autonomy paradigm. We refer to
each paradigm according to the input expected from the user, namely high-level,
mid-level and low-level control paradigms. We find three primary insights. First,
interruptions in the signal transmission (dropped signals) decrease safety and per-
formance in modes where continuous and high-bandwidth inputs from the human
are expected. Second, decreased transmission frequency offers a trade-off between
safety and performance for low-level and mid-level control paradigms. Lastly, noise
alters the safety of high-level input since the user is not continually correcting the
signal. These insights inform us when to shift autonomy levels depending on the
quality of the communication channel, which can vary with time. Knowing the
ground truth of how the signal was degraded, we evaluate a recurrent neural net-
work’s ability to classify whether the communication channel is experiencing low-
ered transmission frequency, dropped signals or noise, and we find an accuracy of
90% when operating with low-level commands. Combined with the key insights,
our results indicate that a framework to dynamically allocate autonomy between the
user and robot could improve overall performance.
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1 Introduction

In recent years, the world increasingly relies on human-robot teams to perform var-
ious functions in defense, human assistance and field operations. In these teams,
the human operator interacts differently with the robotic system depending on the
task. In some cases, the user issues low-level commands where they are in charge
of the majority of control. In others, the user provides high-level commands, such
as goals, which the robot works towards achieving. Indeed, there are a multitude of
control levels in between and the level is typically set before the team sets out to
accomplish a given task. However, there are many scenarios in which performance
might improve if the control allocation shifted online between the two entities.

One reason that autonomy levels might benefit from shifts is signal degradation.
In the domain of user-operated assistive robots, such as a robotic wheelchair, the
commands issued by the user may degrade due to human motor impairment, fatigue
or pain. There is a parallel to field robotics where the user operates a robot at a
distance. In this case, the signal may degrade due to barriers between the robot and
operator or environment changes such as severe weather. In both scenarios, opera-
tors are susceptible to distraction or work overload that may affect performance and
transmit through the control signal. Other reasons to shift autonomy may include
hardware issues or changes in the environment that prevent either the robot or the
user from providing reliable control signals. For example, a person using a pow-
ered wheelchair may move from indoors to a busy sidewalk where more moving
obstacles are present and the subject can no longer avoid collisions independently.

In the domain of assistive robots, the signals provided by motor-impaired users in
many ways mirror those of compromised communication channels: the user signals
are often noisy due to artifacts left by their impairment (noise), limb weakness may
result in undetectable commands by the interface (dropped signal) and the rate at
which the user provides commands may also vary due to factors like fatigue and
pain (transmission frequency).

To study how shared-autonomy performance changes with signal degradation on
the communication channel between the human and the autonomy, we conduct a
nine person pilot study to inform future decisions on how autonomy should be al-
located. In the study, subjects use three levels of control to perform daily-life tasks
with a robotic wheelchair while we modulate the signal to simulate real-world chal-
lenges. Furthermore, we assess the feasibility of detection of a degraded communi-
cation channel so that we can switch autonomy automatically when necessary. The
end goal is to provide a dynamic autonomy allocation framework that will improve
the safety and performance of human-robot teams in both field and service robot
applications.
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2 Related Work

Fig. 1 Robotic wheelchair.

Here we review related literature on autonomy al-
location. Much of the literature develops paradigms
for determining beforehand which autonomy level
to use [2] [11]. These take into account factors such
as task criticality, task accountability and environ-
ment complexity. However, these static, a priori
methods are often not robust to the varying mental
load of the user and changing environment.

Other works [15] [16] [17] investigate physio-
logical parameters, using sensors such as EEG and
ECG, as an indication of a user’s cognitive load.
(Cognitive load can play a critical role in successful
teleoperation and control of robots [9].) The phys-
iological parameters are used to indicate when the
autonomy should change control levels. For the do-
main of these works (pilots and military), to expect the physiological signals is
reasonable, as soldiers and military pilots already wear highly instrumented and
sensorized gear. For assistive robotics however, it is unlikely that we would have
access to such signals due to both fiscal constraints and user preference.

Trust between the user and robot has drawn interest from researchers as a metric
to allocate autonomy. In the field of human-robot interaction, several studies [4]
[7] [8] outline key factors, such as feedback, environment and age, that influence
a human’s trust in automation, which ultimately affects the team’s performance.
In other work, researchers calculate trust in both the robot and the human through
performance-based metrics [13] and by comparing the autonomy signal and the user
input [3]. Trust shows promise as a factor to influence autonomy allocation, and we
expect other metrics may also play a role, such as communication channel quality.

Most similar to our work, Choiu et. al. [5] perform a virtual experiment where
subjects navigate a mobile robot through an obstacle course while noise is added at
a specific section of the map. The users operate in three modes (1) full teleoperation
(2) goal selection and (3) manual switching between goal selection and full teleop-
eration. They demonstrate that a dynamic allocation of autonomy controlled by the
user (mode 3) outperforms the other two modes when faced with a distraction task.

Our work differs from the state of the art in several ways. We conduct an ex-
periment using a physical system and modulate the signal with three degradation
schemes: dropped signals, transmission frequency and noise. This helps us to iden-
tify when performance or safety has declined, and we furthermore do so for multiple
levels of (static) autonomy allocation. From these results, we gather insights for a
dynamic autonomy allocation framework and demonstrate a signal degradation de-
tection technique to be used within said framework.
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(a)

(b)

(c)

Fig. 2 Experimental Setup. (a) Task layout: (G1) Docking station. (G2) Turn in place for orienta-
tion, (G3) Doorway traversal, (G4) Left turn (wide), (G5) Right turn (tight), (OS) Operator Station.
(b) Layout diagram showing five goals. (c) Operator station.

3 Methods and Design

The focus of this study is human-robot teams in which the robot is jointly controlled
by robotics autonomy and a human operator. In these scenarios, the robot relies on
the control commands from the human operator and its own sensor readings. The
quality of the communication channel which relays this information between the
operator and the robot impacts the team’s interaction. If degraded, it can obstruct
the transmission of information needed for successful task completion.

The human operator can control the robot with different levels of command
granularity: from low-level commands using teleoperation, through increasingly
higher levels of commands until (nearly) full autonomy. While low-level commands
give the human operator more control over the minutia of task execution, higher-
level commands may be all that are practical when the communication channel is
degraded—for example, due to increased distance of communication, human fatigue
or other external factors.

The purpose of this study is to investigate the effect of various degradations of
the signal coming from the human and how this changes with various control levels
(autonomy allocations)—that is, which control levels are invariant or particularly
susceptible to a given signal degradation. We design an experiment to investigate
this scenario in a controlled laboratory environment. Towards this aim, nine sub-
jects control the navigation of a mobile robot to multiple goal locations. The robot
is commanded with three different levels of control granularity, while the signal is
artificially modulated to capture different features of communication channel qual-
ity. The task performance, safety, control signals and human attention are monitored
during task execution. The following subsections elaborate on details of the design
and protocol.
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3.1 Control Level

Humans command mobile robots using different control levels with varying de-
grees of command granularity, typically dictated by the task, environment and/or the
user’s cognitive load. The user signal might encode low-level control commands—
for example, the speed and direction at every instance in the trajectory. Commonly,
for low-level control the user operates the mobile robot using an interface like a joy-
stick with some visual information provided by their own eyes, on-board cameras
or a sensorized environment. In other formulations, the operator may provide mid-
level control commands—for example, discrete longer-duration actions such as turn
right or go forward. Such commands might be provided via switches, button presses
or voice, to name a few. In high-level control, the operator provides even higher
level information—for example, the human might indicate a task or goal, through
selections on a screen or natural language, for example.

In this study, we consider three levels of shared control:

1. Low-level Control (CL): Using a PS3 controller joystick, the user provides a
continuous stream of linear and angular velocities to control the robot. The
autonomy steps in only to prevent collisions [1], and the execution trajectory
otherwise is determined by the human operator.

2. Mid-level Control (CM): Using the PS3 controller buttons, the user provides
discrete directional commands: such as “turn left” and “forward”. The auton-
omy executes these commands, taking care also to avoid obstacles.1

3. High-level Control (CH ): The user provides end goals or waypoints for the
robot to navigate towards via a point-and-click visual interface using RVIZ.2

An autonomous path planner calculates a safe trajectory from the current robot
pose to the human-provided target pose, while avoiding obstacles.

3.2 Signal Modulation

The quality of signals received from the human by the robotic system depends on
the quality of the communication channel between them, which can be influenced
by human and environmental factors. In various scenarios involving a mobile robot,
the signals may be sent over wireless networks. The wireless signals can be affected
by many external factors such as weather, electrical interference, radio frequency
interference and distance, to name a few.

Signal quality can be quantified according to different properties such as the sig-
nal frequency, transmission frequency and noise. In this study, we replicate these
factors in a controlled setting, where three signal properties are individually mod-
ulated. For each of the following signal properties, we test three different levels

1 Note the primary differences between CL and CM are the discrete input and the rate of input.
2 RVIZ is a 3D visualization tool distributed with the Robot Operating System (ROS).
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of signal modulation by changing the threshold values: low modulation, moderate
modulation and a high level of modulation. The thresholds which determine the
modulation settings were chosen empirically during the experiment design phase.

1. Dropped signals: Every input signal is assigned a random number η sampled
from a Gaussian distribution η ∼N (0,1/3). If η is greater than a preset thresh-
old, the corresponding input signal is dropped. (In our implementation, the three
thresholds were [0.6,0.5,0.4].) The result is lost information.

2. Transmission Frequency: The rate ρ at which the robot receives the user’s
command over the communication channel is varied, within a preset range. (In
our implementation, the three values of ρ were [5,10,15] Hz.) The result is a
delay in the receipt of information.

3. Noise: A random value ε is sampled from a zero-mean Gaussian distribution,
with a different variance σ2 for each combination of control level and modula-
tion level. The noise is implemented differently depending on the control level:

a. Low-level control (CL): ε is continuously added to the control signal at
low, moderate and high levels of variance. (In our implementation, σ2 =
[0.6,0.8,1.0].)

b. Mid-level control (CM): If ε is greater than the preset noise threshold, one of
the commands is chosen randomly. (In our implementation, the thresholds
were [1.0,0.92,0.85] and σ2 = 1/3.)

c. High-level control (CH ): ε is multiplied by a distance value d dictated by
the task, and d ·ε is added to the goal position provided by the user. (In our
implementation, d is set at [6,8,10] cm and σ2 = 1.)

Participants perform each task under 10 experimental conditions: three modu-
lation levels for each of three signal properties (dropped signals, transmission fre-
quency, noise), plus an unmodulated (clean) signal.

3.3 Experimental Setup and Tasks

We use a robotic powered wheelchair in this experiment. This wheelchair, shown
in Figure 1, is a commercially available Permobile wheelchair that we retrofit with
a laser scanner, RGB-depth sensor and on-board computer. These components plus
our software suite provide additional autonomous capabilities such as doorway de-
tection, obstacle avoidance and path-planning, to name a few.

The test environment is located in the Assistive and Rehabilitation Robotics Lab-
oratory at the Rehabilitation Institute of Chicago. The setup consists of an obstacle
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course as shown in Figure 2. The operator is positioned at the operator station3

(Fig. 2(c)) and can clearly observe the robotic wheelchair for each task.
Wheelchair tasks are chosen for measuring task performance, safety and control

signals. A distraction task is also included for measuring human attention.
Wheelchair Tasks. The tasks are selected to cover a range of commands and

non-trivial control strategies. In the domain of assistive powered wheelchairs, some
of the challenging daily tasks include obstacle avoidance, navigating through tight
spaces and correcting orientation for a desired pose. The following five tasks are
selected from the Wheelchair Skills Test (WST) [14] and illustrated in Figure 2(b):
(G1) Dock at a table (G2) Turn in place for orientation correction (G3) Doorway
traversal (G4) Wide left turn and (G5) Tight right turn.

The goals are located such that the distance traversed from the center of the room
to each of the five goal positions is equal. Achieving the above goals requires careful
maneuvering around obstacles and controlling the linear and angular velocity of the
robot’s trajectory.

As seen in Figure 2(a), blue tape lines on the floor mark the goals. In order for
the goal to be considered as successful, the wheelchair frame needs to fully cross
the blue line. The operator is located at the operator station and has full visibility of
the wheelchair for all five goals.

Distraction Task. To measure and evaluate the operator’s cognitive workload
and strategic behavior, we include a distraction task in the experiments. Distraction
tasks such as this are commonly employed in psychophysiological studies.

Fig. 3 Distraction Task.

We use the U.S. Air Force Multi-Attribute Task Battery
(US AF MATB) software developed and distributed pub-
licly by the U.S. Air Force Research Laboratory [12] and
well-studied throughout the human factors literature. For
this study, the “Gauges” subtask from System Monitoring
is selected (Fig 3). In normal operating behavior, the yel-
low gauge indicator fluctuates within one tick of the center
gauge. A malfunctioning gauge goes beyond this normal op-
erating range. The user’s task is to monitor the gauges and send a correcting signal
when a gauge has malfunctioned by pressing the corresponding key (i.e. F1, F2, F3
or F4). The speed of the gauges and the rate of malfunction are tunable.4 All other
adjustable parameters were kept at default settings.

3 We have the subjects stand at a static operator station, instead of riding the wheelchair, in order to
allow for the assessment of subject attention using an established distraction task [12] that is well-
studied within the human factors literature. This task requires the subject to monitor a screen and
interact with a keyboard, which was an overly cumbersome setup to have onboard the wheelchair.
4 For this study, we use the following System Monitoring Subtask Basic Parameters: (a) Gauge
Speed Lower Limit = 2, (b) Gauge Speed Upper Limit = 4, (c) Correct Fault Identification Pause
= 10 and (d) Gauge Malfunction Timeout = 10. We use the keyboard as the only input option.
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3.4 Procedure

The experimental protocol and consent form was approved by Northwestern’s Insti-
tutional Review Board (IRB). The full session lasted for approximately two hours.

Participants. Nine consenting able-bodied adults (age range: 21-28) participated
in the experiments. The subjects included those with varying levels of skill and
experience with robotic devices: from no experience to regular usage.

Protocol. The participants were introduced to the mobile robot and given an
overview of the experiment and the wheelchair tasks. They were shown each task
and given complete instructions on what constituted a completed goal. Then they
were introduced to the distraction task. They were instructed on the normal oper-
ating behavior of the gauge and what was considered a malfunction. They were
shown how to respond appropriately and given time to practice monitoring and op-
erating the distraction task. It was stressed to the users that they should treat both
wheelchair and distraction tasks with equal importance. The session began after the
participant became familiar with each task and the nature of the experiment. They
were informed that their control input may be randomly varied, but they were not
given the details about what features of the signal would be varied or how.

Each session consisted of three sections corresponding to the three control levels:
CL, CM , and CH . For each of three control levels, 30 trials were performed, covering
all 10 combinations of modulation type-level (3 modulation types × 3 modulation
levels + 1 clean run) with 3 tasks executed per combination. (Which 3 tasks were
randomly assigned and balanced, such that across subjects each combination was
performed the same number of times for each task, and within a given subject across
all combinations each task was performed the same number of times.) The order of
the control levels, modulations and modulation levels was randomized and balanced
across participants in order to minimize bias due to fatigue.

Each section of the experiment consisted of two phases: (1) an instruction phase
and (2) a test phase. In the instruction phase, the participant was shown how to
use the control level for the current section of the experiment and allowed time to
become familiar with its operation. This time varied for each participant. After the
participant was comfortable, the 30 trials of the test phase began. For each trial, the
subjects were given their next goal after the completion of the current one. Subjects
were not aware of which modulation setting was applied to their control signals. For
safety, collision avoidance remained on at all times.

Metrics. In accordance with the literature on assistive and mobile robotics, we
chose two metrics:

1. Performance: Calculated as the time from task initiation until the goal was
reached. This metric is important for scenarios where the objective is to opti-
mize time, for example crossing a busy road in a timely manner.

2. Safety: Calculated as the average distance from the closest obstacle to the robot
at each time-step of the task execution. This metric is useful when physical
safety is a priority; for example, operation in a crowd where the user and those
around them are safer the farther the wheelchair is from any person or object.
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Fig. 4 Effect of modulating the dropped signal. Data from three modulation levels (Low (blue),
Moderate (green), High (yellow), Sec. 3.2) for each of three shared-control paradigms (CL, CM ,
CH ). Plots show (a) task time and (b) distance to obstacles, averaged over all tasks and subjects.

4 Experiment Results

This section highlights key results from our pilot experiment for each metric. Statis-
tical analysis is performed using analysis of variance (ANOVA) where group labels
are either modulation level or shared-control paradigm. If statistical significance is
found (p < 0.05), a pairwise t-test is performed and results are indicated in Figures
4, 5 and 6. For all plots, * denotes p < 0.05, ** p < 0.01 and *** p < 0.001.

Dropped Signals. Looking at performance for control level CL, we notice that
dropping the signal significantly alters a user’s ability to complete a task within a
reasonable time frame, shown in Figure 4(a). Namely, a statistically significant dif-
ference in task time is found between the low and high modulation levels (p< 0.05).
Figure 4(b) shows that safety is also significantly compromised with a dropped sig-
nal (p < 0.05).

Conversely, dropped signals do not appear to significantly affect control levels
CM and CH . This suggests that when the signal is degraded by drop, the autonomy
should switch away from CL since both safety and performance are compromised.
The results further suggest that an appropriate threshold, above which the amount
of dropped signal is considered too damaging for CL, should be set between the low
and moderate modulation levels.

Channel Frequency. The results of lowered channel frequency suggest some
trade-offs between safety and performance. Figure 5(a) indicates CL provides the
best task time performance across all modulation levels, and significantly so for
highly delayed signals (p < 0.05). However, Figure 5(b) shows that CM is safer as
users tend to operate farther from obstacles, significantly so at moderate modulation
levels (p < 0.01).

Signal Noise. Signals degraded by noise can play a role in the safe operation
of the robot. Safety is more compromised across all noise levels in CH compared
to both CL and CM . While this difference is not statistically significant, it likely
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Fig. 5 Effect of modulating channel frequency. Data from three shared-control paradigms (CL
(blue), CM (green), CH (yellow)) for each of three frequency modulation levels (Low, Moderate,
High, Sec. 3.2). Plots show (a) task time and (b) distance to obstacles, averaged across all tasks
and subjects.

would have practical implications. On average, the robot moves 3.6 cm closer to
obstacles when operating under CH with noise at all levels, as shown in Figure 6(b).
For context, the ADA requires doorways to be only 11 cm wider than our Permobil
wheelchair, so 3.6 cm can be significant. Somewhat surprisingly, noise otherwise
appears to have little effect on performance or safety for control levels CL and CM .

Distraction Task. The results of ANOVA on the distraction task performance
do not indicate any statistical significance across control levels or modulation lev-
els. Across all paradigms, the percent correct gauge responses of triggered faults is
62.0% ± 26.4%.

5 Signal Degradation Detection

The results of the experiment suggest that the signal quality influences both the
performance and safety of the user differently in each control level. In real-world
scenarios, operating in a degraded state could lead to a mission-critical failure or
compromise the safety of a patient. Thus, it is important to allocate control and au-
tonomy appropriately in real-time. The first step is to detect the quality of the signal.
This section outlines the use of specific machine learning techniques to classify the
state of the signal’s degradation.

When in CL or CM the robot receives from the user only motion commands. In
CH , the robot receives only a goal. If the communication channel has degraded at
all, the robot would need to detect the channel quality using only this information.

We choose a recursive neural network (RNN) structure using long short-term
memory cells (LSTM) that classifies the user’s commands over a set time period as
either clean, noisy, dropped or lowered transmission frequency. The RNN LSTM is
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Fig. 6 Effect of modulating signal noise. Data from three shared-control paradigms (CL (blue), CM
(green), CH (yellow)) for each of three noise modulation levels (Low, Moderate, High, Sec. 3.2).
Plots show (a) task time and (b) distance to obstacles, averaged across all tasks and subjects.

chosen because of its ability to retain information about the previous state or input.
Moreover, results in speech processing show that a bidirectional LSTM (BLSTM)
structure, which shares information about future states, improves the classification
rate [6]. We test both in our analysis (since there is additional computational com-
plexity associated with the BLSTM). In our implementation, a snapshot of the signal
from the human— continuous velocity commands, discrete motion commands or
goal positions, depending on the control level—for a designated number of samples
is the input to the RNN, which outputs a classification of the signal’s state.

To obtain unbiased results, we use three-fold cross validation where, in each
fold, 6 subjects (randomly balanced) are used to train and the 3 remaining subjects
to test. The reported accuracy in Table 1 is the average of the three models from the
cross validation. The data is split into samples of 30 consecutive points in time and
then randomized for both training and testing. We also ensure the data is split using
approximately equal amounts of all classes. The algorithm used for training is Adam
[10] with a maximum of 200 epochs. This process is repeated for each control level.
Since the signal type is different for each control level and robot will always know
its current control level, it is necessary and reasonable to train separate networks.

When operating under CL, it is critical to determine when the signal is dropping
because of the significant decrease in safety and increase in average task time. In
Table 1, both the unidirectional and bidirectional LSTM achieve a classification
accuracy between 70-80% when classifying all 4 possible signal states.

The results, however, indicate that primary source of error is false positives be-
tween the clean and lowered transmission frequency samples—the network could
not differentiate reliably between the two. Since for CL lowered transmission fre-
quency does not appear to affect performance or safety (Figure 5), both transmission
frequency and clean modulations can be bundled into a single class, which increases
the accuracy to ∼90% for both models. This 10% error might further be reduced by
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taking an ensemble approach or the mean over several time intervals rather than a
single 30 sample segment, for example.

When predicting degradation in control levels CM and CH , the network could not
accurately differentiate between the different signal degradation types. On average,
it achieved a classification accuracy of around 25% (where random performance
is also 25%). The user inputs are at a lower frequency in these two control levels,
which causes the data to be sparse and have long periods of time without a com-
mand. This sparsity and time between commands is likely the primary issue with
this approach. Thus, other methods will need to be explored in the future to deter-
mine when the signal has degraded when in control levels CM and CH .

In summary, we have developed a general model able to classify the signal of
users whose data has not yet been observed, which performs well under low-level
shared-control paradigms. Also, we see that the bidirectional model does not pro-
vide much improvement in the 3-class formulation. Therefore, if computational
power is a limiting factor, the unidirectional model provides comparable results.

6 Insights for a Dynamic Autonomy Allocation Framework

In human-robot teams, mobile in particular, signal quality and human attention,
awareness and workload changes constantly. Thus, it is vital that the robot can de-
tect when the user is hindered or if the autonomy cannot succeed in performing the
desired task. With this knowledge, control can be allocated in real-time to either
the human or robot, or some mix of the two. Knowing that the prediction of signal
degradation type is feasible for a low-level control command, we will use the re-
sults of the experiment to provide insight into when and how autonomy should be
allocated for use in a dynamic autonomy allocation framework

When the communication channel is dropping signals, the human-robot
team should shift away from a low-level shared-control paradigm. In the low-
level paradigm, the operator can continuously correct their commands to adjust the
robot’s behavior. The more often the signal is dropped, the less often the user can
correct the behavior of the robot, leading to both performance and safety decreases
(Figure 4). Based on our results, the autonomy should shift when the dropped rate
surpasses a threshold between the low and moderate modulation amounts.

Architecture Classes
Accuracy (%)

CL CM CH

LSTM 4 73.1 27.7 26.2
BLSTM 4 75.8 30.8 28.7
LSTM 3 89.8 46.8 47.7

BLSTM 3 89.8 46.7 52.5

Table 1 Prediction accuracy results for single-layer 128-cell LSTM and BLSTM architectures.
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A reduction in transmission frequency requires the design to prioritize ei-
ther safety or performance. Our results show that low-level control provides the
best performance when the channel frequency drops a lot to the high modulation
frequency level. Conversely, safety is significantly improved by operating at mod-
erate levels in a mid-level shared-control paradigm. If a reduced channel frequency
is detected and the level is known, the autonomy can shift between CM and CL. If
the level is unknown, the designer will need to prioritize safety or performance to
decide which paradigm to use.

The autonomy should shift from high-level control when the communication
channel is noisy. Lack of continuous correction may also have impacted the safety
in the high-level shared-control paradigms when afflicted by a noisy communica-
tion channel. Here, the user provides only a goal for the mobile robot, and noise
may place that goal closer to an obstacle. Moreover, we found that noise did not
affect performance or safety in CL (despite many subjects expressing a less enjoy-
able experience). Thus, if avoiding hazards is a critical component of the function of
the robot, detecting noise and moving to a paradigm that allows for more operator
correction may prove helpful.

7 Conclusion

The experimental results demonstrate the need for a framework that can dynami-
cally allocate autonomy between the user and robot to optimize both performance
and safety. Based on an analysis of the data, some control levels are explicitly better
than others under certain degraded states of the communication channel between the
human and the robot. We hypothesize that the rate at which a user can send correc-
tive signals —which is dictated by the specific shared-control paradigm— explains
these findings. Additionally, the experimental results suggest that a designer may
need to choose between safety and performance when the transmission frequency is
lowered. The results provide insight that can inform the design of a framework to
dynamically adjust the control level when the quality of the signal changes in real-
time. The first step in the design of such framework is to identify the degradation
state of the signal. When in lower-level control, RNN LSTMs can reliably predict
the state of the communication channel. However, more work is needed for classify-
ing the signal in the other shared-control paradigms. This work lays the foundation
for a framework that will be able to optimize the safety and performance of patients
using assistive devices as well as human mobile robot teams.
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