Automated Incline Detection for Assistive Powered Wheelchairs

Mahdieh Nejati! and Brenna D. Argall®

Abstract— This work presents an algorithm for automated
real-time ramp detection using 3D point cloud data in the
context of shared-control powered wheelchairs. Limitations in
the interfaces available to those with severe motor impairments
can make basic maneuvering tasks with powered wheelchairs
difficult. Although a significant amount of work has been done
on obstacle detection and avoidance, much less attention has
been given to algorithms for the safe and reliable detection of
ramps and inclines; even though navigating these structures
is an important part of urban life. We provide an algorith-
mic solution for accurately detecting traversable inclines for
applications with powered wheelchairs using the Point Cloud
Library (PCL) within the Robotics Operating System (ROS)
framework. All algorithms are implemented first in simulation
and later evaluated on data obtained from indoor and outdoor
urban environments. We measure the performance of our
algorithm with systematic testing on several different ramp
structures, observed from varied viewpoints. Results show that
our algorithm is successful in detecting the orientation, slope,
and width of traversable ramps with up to 100% accuracy and
an average detection accuracy of 88%.

[. INTRODUCTION

Powered wheelchairs are a solution to providing inde-
pendent mobility to people who cannot operate a man-
ual wheelchair for reasons of limited strength or impair-
ment. Shoulder forces and moments more than double
when ascending ramps with manual wheelchairs [1]. Elec-
tric wheelchairs eliminate this physical burden. However,
a different set of challenges are introduced with binary
control interfaces. For those with sever motor impairments,
commercial powered wheelchairs are commonly equipped
with binary interfaces such as Electronic Head Array systems
or Sip-and-Puff (SNP) devices. These interfaces are often
cumbersome to operate, and the difficulty in using these
devices can make certain tasks that require fine control
difficult.

Ramps require particularly careful consideration [2]. Con-
sider a SNP wheelchair user traversing a ramp into a van.
SNP devices work as switches, and using them for modu-
lating the speed and power in a way that is necessary for
ramp traversal is extremely difficult. The speed and heading
commands are non-proportional, and do not scale with the
magnitude of the breath exhalation/inhalation issued by the

'Mahdieh Nejati is with the McCormick School of Engineering Master of
Science in Robotics Program, Northwestern University, Evanston, IL, USA
m.nejati@u.northwestern.edu

2Brenna D. Argall is jointly appointed with the Department of
Electrical Engineering and Computer Science, the Department of
Mechanical Engineering, and the Department of Physical Medicine
and Rehabilitation, Northwestern University, Evanston, IL, USA
and the Rehabilitation Institute of Chicago, Chicago, IL, USA
brenna.argall@northwestern.edu

user. Speed may be changed only by first navigating to a
menu (typically four speeds are available). So before driving
up the ramp, the user must give the correct number of binary
turning commands in order to be properly aligned and to
prevent crashing with the edges. Driving up a ramp at the
lowest speed level is not possible (insufficient power). On the
other hand, using anything other than the lowest speed level
after driving up the ramp while inside the van is dangerous
and may result in crashing into walls.

Detecting inclines also has implications for the broader
field of mobile robots. Traditionally, mobile robots have
been restricted to traversing level ground. Much attention has
been paid in mobile robotics research to obstacle detection
and avoidance while traversing level ground. This restriction
presents a significant limitation to real-world applications
and urban navigation, such as sacrificing detecting ramps and
traversing highly uneven floors [3]. Significantly less work
has been done on detecting drop-offs and inclines, although
detecting these are just as crucial and complex.

One solution to the disparity between demand and cur-
rent state-of-the-art is the use of shared-controlled assistive
robotic wheelchairs, where the task of navigation and steer-
ing is shared between the user and the robot. Assistive tasks
previously addressed on our robotic wheelchair platform
(Fig. 1) include automated open doorway detection [4] and
automated perception of safe docking locations [5]. The aim
of this work is to expand on this paradigm with automated
ramp detection and alignment information.

In this paper, we provide a method for detecting ramps
and traversable inclines without any a priori knowledge of
the environment. We use point cloud data collected from
an RGB-D sensor (camera image + depth), using the Point
Cloud Library (PCL) within the Robot Operating Systems
(ROS). Furthermore, the information from the RGB-D sensor
can be used for purposes other than safety, for example,
object recognition. We update the traversability costmap
based on information from the algorithm. The result is a
robust and rapid detection of the location and orientation of
navigable ramps over which a wheelchair can drive.

We evaluate our system quantitatively by constructing
local safety maps for different datasets and comparing them
against ground truth maps to measure error. We also measure
the accuracy of the ramp detection process.

In the following section, we overview related work on
ramp detection and robotic wheelchair perception (Sec. II).
In Section III we describe our algorithm for detecting
traversable ramps. We describe our experimental setup and
discuss the results in Section IV, followed by conclusions
and future work in Section V.

II. RELATED WORK

Here we present prior work on perception and incline
detection for mobile robots and robotic wheelchairs.

A. Ramp and Drop-off Detection

Examples of ramp detection use a variety of methods and
sensors. Some provide a general solution to identifying ramp
structures in the scene, but they do not identify the precise
location and orientation information about the ramp [6-9].

Rankin et al. [6] use geometry and thermal cues to
perceive negative obstacles (such as ditches, holes, and other
depressions) on cross-country terrain for unmanned ground
vehicle autonomous navigation at night.

Cockrell et al. [7] use RGB-D point cloud data to gen-
erate a gradient height map. The algorithm can identify
sudden changes in gradients, and using two threshold values
categorizes each gradient cell into three categories: ramps,
obstacles, or level floors. The algorithm is able to distinguish
between a ramp and a level floor. However, the output does
not provide the necessary information for identifying the
exact location and the edges of ramps or slopes, or whether
the gradients are safe for traversal.

Murarka et al. [8], [9] use motion cues, stereo-based scene
reconstruction and a color segmentation stereo algorithm to
categorize observed terrain into five classes: ground, below
ground, above ground, drop-off edge, and unkown. In their
algorithm, edges are identified by comparing consecutive
stereo image pairs captured by the camera, and the output
is affected by the speed and motion of the wheelchair. The
remaining classes are determined by setting thresholds on
the elevation of cells in the gradient map. Additionally, the
color segmentation stereo algorithm can be susceptible to
environmental conditions.

The approaches described above provide a binary solution
to the problem of ramp detection. Other works simplify the
problem by focusing on customized ramp structures [10-12].

As part of designing a climbing tracked robot, Li et
al. [10] provide an algorithm for detecting ramps. However,
the algorithm is specific to their experimental set up (a level
plane with a single ramp) and does not generalize to a
powered wheelchair planner suitable for urban navigation.

Brossette et al. [11] use RGB-D point cloud data to pro-
vide an understanding of a ramp and staircase environment
for their humanoid robot. They describe an overview of
steps for detecting ramps, however performance numbers and
detection rates are not presented.

Detecting an incline plane in the vicinity of the wheelchair
is not sufficient for detecting navigable ramps. Moreover,
information about the width, location and orientation of the
ramp can be used to seed target locations for a motion plan-
ner. Furthermore, some approaches are limited in application
areas due to their susceptibility to environmental conditions
such as ambient light, colors and contrast. In order to identify
safe ramps for powered wheelchair users, we need to extend
these detection algorithms further.

Fig. 1: Our robotic wheelchair system in real hardware (left) and the Gazebo
simulation environment (right).

B. Perception for Robotic Wheelchair Navigation

Perception in robotic wheelchairs is done using an array
of different sensors, and for different purposes.

Historically, perception is used for localization, to detect
and avoid obstacles, to perceive other humans or identify cer-
tain landmarks, and finally vision-based navigation [13-17].
Depending on the application, different sensors are utilized.
Demeester et al. [13] use front and back laser scanners and
wheel encoders to localize the robot and generate planned
paths while avoiding any and all protrusions in the path.
Trahanias et al. [14] use a combination of sonar range
sensors and a camera to constantly check for obstacles in
the direction of motion. Similarly, Horn et al. [15] use a
combination of ultrasonic sensors and a camera to locate the
wheelchair in a known environment.

Researchers at McGill university conducted surveys to de-
termine powered wheelchair design recommendations from
users, which highlighted the ability to detect the edges of
ramps and the ability to intelligently adjust the speed and
angle to account for the detected ramps [18]. Ensuring safety
is an essential role of a smart powered wheelchair in enabling
the operator to perform the aforementioned tasks.

Our algorithm not only identifies the exact location of
the ramps, but does so without clearing other obstacles,
and returns the orientation and dimensions of the ramp,
the amount of incline and the length of the ramp. This
information is useful for providing navigation goals and
controller commands to safely drive the identified ramp. Our
work extends the prior state of the art by not only detecting
inclined planes in a typical urban setting with non-uniform
surfaces, but also determining whether an incline is safe
for traversal by a powered wheelchair as specified by the
Americans with Disabilities Act (ADA) [19] accessibility
guidelines for ramps. In addition, we add artificial obstacles
to the side of open ramps to ensure the planners will prevent
the wheelchair from getting too close to the edges.

III. RAMP DETECTION ALGORITHM

At a high level, our algorithm consists of two steps. The
first step is to find inclined planes in the vicinity of the
robot. The second step is to determine if such planes are
navigable. More specifically, our algorithm first identifies
inclined planes, finds the convex hull of the plane and
subsequently the four corners that define the incline (Sec.

(b)

(C)

(2

Fig. 2: [Best viewed in color.] Illustration of the sequential steps in the algorithm. (a) Point Cloud of the scene with image overlay. (b) Candidate inclined
surface extraction (blue region). (¢) Convex hull (red dots). (d) Corner locations (red markers). (e) Horizontal edges representing the start and end of the
ramp (horizontal red lines). (f) Left and right edges of the ramp (vertical red lines). (g) Identified starting location of the ramp-ascension pose (green

marker) and direction of travel (green arrow).

C
f
O—.*--—-———‘hi“.
: ram, :
incline
[
E Y kc‘«l
S o —— hgshy
v
Sz
X
C
n n y

Fig. 3: Diagram illustrating variables used in Algorithm 1. Pj,cjine: Pre-
processed input cloud with convex hull Q. h, and hy: Flush transitions of
the ramp to landings, with centers at ¢, and ¢y respectively. v and v: Unit
vectors in the direction of slope and run, respectively. 6;: Slope angle.

III-B), and then determines whether the ramp is safe for
navigation or not (Sec. III-C).

The input to our algorithm is a continuous RGB-D point
cloud stream, ignoring the RGB data. The output of the
algorithm is the location of each identified navigable ramp
with respect to the camera coordinate system, a set of normal
vectors describing the orientation of the ramp plane and
the estimated width of the ramp. In the camera coordinate
frames, the Y-axis is top-to-bottom and perpendicular to the
ground plane, the X-axis is left-to-right, and the Z-axis is
back-to-front (Fig. 3). This information is then transformed
into the world coordinate frame. Once determined safe for
navigation, the points associated with the ramp are removed
from the point cloud stream sent to the costmap server,
which updates the local and global costmaps. Ramp edges are
inflated and kept within the costmap. Information regarding
the ramp goal location and orientation is sent to the path
planner for safe ramp navigation.

The computation steps used for navigable ramp detection
are provided in Algorithm I. Note that we restrict our search
to ramp structures that are rectangular in geometry.

Figure 2 illustrates the sequential steps of the algorithm.

A. Data Pre-processing

Working with raw point clouds is costly due to the large
number of datapoints. To be useful in real-time, we enhance
the performance and speed of the algorithm by preprocessing
the incoming stream of point cloud data. We first create
a downsampled representation of the point cloud P using
the VoxelGrid filter, which is an implementation of an
Octree structure; we next remove points that are further
than a threshold 7 from the sensor (here 7 is the sensor-

specific threshold after which data becomes unreliable and
thus a potential source of error in the next steps; in our
implementation T = 5.0 m). Finally we reduce the noise
in P by removing outliers. This significantly improves the
runtime speed of the algorithm. In our implementation we
take advantage of the libraries and filters provided by the
Point Cloud Library (PCL) [20].

B. Finding Inclined Planes

The first step of the algorithm is to identify all of the
candidate inclined planes within the vicinity of the robot. In
order to identify inclined planes, we first find the normals
N for all the points in P. Then we can take advantage of
a Region Growing algorithm to merge the points in P that
are close enough in terms of the smoothness and curvature
constraints imposed on the point normals N (Algorithm 1,
line 2). This is an important step, especially when it comes
to identifying ramps from real-world data, which can be
quite noisy, in addition to the fact that many outdoor ramps
often have coarse surfaces. In our implementation we used a
smoothness threshold of 5° and a curvature threshold of 2°.

After the clusters are segmented, we use the point normals
to find the dominant inclined plane (line 4). The incline
plane is fit to the clusters using a Random Sample Consensus
(RANSAC) estimator. Any cluster whose point normals are
(i) parallel to the ground plane normals, (ii) within an offset
angle for plane matching (here we accept offsets up to 5°),
and (iii)) with an acceptable number of inlier points (here
threshold is set to 10) is considered for incline fitting.

Precise knowledge of all the datapoints contained in the
plane model is not necessary for further modeling. Similar
to [11], after identifying an incline plane, we can further re-
duce the point cloud to its convex hull O (line 6) without any
loss of important information, ignoring concave polygons.
In this way, we can also represent the plane as a structure
composed of a normal vector to the plane model, an origin
point that is the centroid of the set of points and a small
set of points that define its convex hull. After determining
that Q has enough points to encapsulate the full plane, we
find the four corners of this convex hull (line 7) in clockwise
order, starting from the top left corner.

The width wyqmp of the inclined plane is estimated using
the corner values (line 8). Additionally, we identify the
incline plane edges (the horizontal line representing the flush
transition from slope run to level planes at the bottom /%, and
top Ay of the slope) (line 9). The centroids ¢, and ¢y of A,
and hy are calculated (line 10). See Figure 3 for illustration.

Fig. 4: Examples of the algorithm working correctly on different scenes with a variety of ramps and landing configurations. Top row: Indoor ramps. Bottom
row: Outdoor ramps. Two leftmost images taken during the day; two rightmost images during the evening. The red border around the plane indicates where
the algorithm believes the convex hull of the ramp is. The green marker represents a safe starting position for ramp ascent/descent. The green arrow points

towards the direction of travel.

Algorithm 1 Incline Detection

1. Given Pointcloud P
Find Ramp Cloud
C « findclusters(P)
for ¢; € C do
Pinciine < extract_incline(c;,N)
end for
0 « extract -hull(Pipciine)
r «— extract _rectangle(Q)
Wramp <— get _width(r)
hy, < get _horizontal _near(Q)
hy < get_horizontal _far(Q)

NN R LD

A

10. cn < get _center(hy,)

cf < get_center(hy)

1. s =cf—ca
12. Vv, =< ¢p™, ¢’ (c,fj— 1) >
13. if 6, = arccos(%) < Opax and Wramp > Wnin
14. Pramp <~ Pincline
15. end if
Extract Side Edges

S, « get_right_edge(Q)

S; < get left_edge(Q)
17. R+ (Pramp -8, — Sl)
18. return P—R

16.

Key: || - || = distance (Euclidean), &, = nearest horizontal
edge, hy = furthest horizontal edge, 6, = max allowable
slope (5°)

C. Finding Navigable Ramp

Our determination of what constitutes a traversable ramp
is informed by the 405 Americans with Disabilities Act
(ADA) [19] wheelchair accessibility guidelines for ramps.
According to these guidelines, the running slope must not
exceed 1:8 (i.e. 7.13°) [12]. This means that for every inch
of height change, there should at least be 8 inches of ramp
run. To check for this, we define two vectors (lines 11-12):
vector Vg, from the center of the closest horizontal edge to the
furthest horizontal edge of Q (the ramp slope); and vector
vy, the unit vector pointing from the center of the closest
horizontal edge of Q projected forward in the Z-axis direction
(the ramp run). If the angle 6; between Vg and v, is less than
Omax = 7.13°, then the slope meets the ADA specifications.

The 405 ADA guidelines also specify the required ramp
width (Wpi,) to be at least 36 inches (91.5 cm). If the
convex hull Q meets both the slope requirements and width
specifications, then we can mark this cloud cluster P,ji,. as
a traversable ramp Py, (lines 13-15). Once a ramp cloud
is identified, we can use Q to define a rectangular region for
the ramp plane. The position, orientation, and width of this
region is stored and sent to the path planner and controllers.

Finally, the side edges of Py are identified (line 16). Left
and right stripes describing the inflated edges of the ramp are
then removed from Py, (line 17), and the remaining points
are removed from the point cloud (line 18). This point cloud
is cleared from the costmap, thus safely clearing the ramp
from the list of observed obstacles.

IV. EXPERIMENTS

The algorithm was developed for the wheelchair platform
in Figure 1. This platform is equipped with a suite of sensors,
from RGB-D to laser range finders to ultrasonic sensors.
Perception capabilities include open doorway [4] and safe

docking [5] location detection. A crucial next step to support
further development in enhancing the 3D perception capabil-
ities of the system for situations where robotic assistance is
beneficial and safe includes autonomous ramp detection. We
use the RGB-D sensor as the source of perception input,
which provides a large amount of information about the
scene at a continuous rate.

A. Data Collection and Methods

The data used for evaluation consists of a variety of
ramp-structures located around the Rehabilitation Institute
of Chicago (RIC) and the city of Evanston, IL, USA. The
ramps used in validation consists of structures commonly
encountered by powered wheelchair users in urban settings,
including indoor ramps, van ramps, small outdoor ramps,
long outdoor ramps, wide ramps and narrow ramps.

The performance of the algorithm is tested at different
angles (ranging from 0°-90°) and distances (ranging from 0-
2.5m) to the ramps. For evaluation purposes, we also include
data that contains no ramps to ensure the algorithm does not
give false positives.

Our experiments to test the ramp detection algorithm are
carried out on a PC connected to an ASUS Xtion Pro sensor.
The PC has an Intel Core i5 processor, 8GB of RAM, and
was running Ubuntu 14.04, ROS Indigo, the OpenNI driver
(version 0.2.2), and the Point Cloud Library (version 1.7.1).

A ramp is considered correctly classified if the algorithm
estimated the four corners of the ramp (indicated visually
with red markers) and the ramp edges, and returns a safe
starting point and direction arrow for driving on the ramp
(indicated visually with a green marker and green arrow).
Each configuration is evaluated for at least 15 frames.

B. Experimental Results

The number of correctly classified frames from each
data input stream was manually counted by reducing the
frequency of the data to 10 Hz. Once the data was collected
and tallied, the statistics were confirmed by running the data
at full speed, approximately 530 Hz.

The results are discussed in terms of the distance to the
ramp and the offset angles, and the external environment
(indoor or outdoor) at detection. Figure 4 presents a number
of screen shots from correctly classified ramps. We also
present some examples of misclassification in Figure 5.

1) Overall Performance: Table 1 summarizes the results
of the true and false positive detection rates, for 10 runs of
the algorithm.

Overall, the detection rates were quite good, with an
average 88% accuracy rate for the full dataset collected. In

Fig. 5: False positives. Left: Outdoor van ramp. Right: Indoor ramp.

each of the cases, the algorithm accurately detected the ramps
for the majority of the frames, with very few incorrectly
classified ramps and no missed ramps.

2) Detection Distance: The results showed that the ef-
fective range of the algorithm is approximately 0 to 1.8
meters from the ramp. The ability of the algorithm to reliably
segment the ramp planes becomes significantly less reliable
the farther away the sensors are from the ramp.

3) Detection Angle: The effect of angle on detecting the
ramp varied according to the ramp structure. For ascending
ramps, if the sides of the ramp were not occluded by walls,
the algorithm was very successful in detecting the ramps for
all measured offset angles, with the lowest rate of detection
about 87%. However, for ascending ramps with offset angles
greater than 75° we start to see a decline in the accuracy
of the estimated ramp corners. For ascending ramps with
occluded edges (brick walls, etc.), the ability of the algorithm
decreases as the angle increases from 45° (head on) to 75°.
For descending ramps, angles greater than 75° hindered the
algorithm’s ability to accurately identify ramps, and resulted
in missed detections. As the sensor is oriented more directly
in front of the ramp, the accuracy increases significantly.

When looked at straight on, the rates of detection for most
ramps were very high, with the exception of the sidewalk
ramp. The difficulty in detecting this could be attributed to
the curved surface and the lack of a well defined outline.
The lowest detection rate was around 66% in this case. For
planning purposes, a detection rate of 66% is still useful.

4) Detection Setting: The accuracy of detecting indoor
ramps was much higher than outdoor ramps. The accuracy of
detection for outdoor cases furthermore increased when there
was less sunlight (i.e. evening, night). The worst scenario was
detecting outdoor ramps covered in snow at noon, where the
infrared reflections obstructed the sensor readings.

The accuracy of detecting the van ramp was very high
(average of 96%) even though it was parked outdoors. This
can be attributed to the sides of the ramp being unobstructed
by walls, such that the ramp is clearly visible and identifiable
from a range of angles on either side. Additionally, the
surface of the van ramp was clean and non-reflective. The
van data also was captured during a less sunny day.

V. CONCLUSIONS AND FUTURE WORK

We have introduced in this paper a novel method for
the autonomous detection of safely traversable ramps using
3D point cloud data, without any visual fiducial or envi-
ronment customization requirements. Through evaluations
on different ramp structures in varying configurations and
environmental settings, our algorithm has demonstrated good
performance and was shown to be effective in the identi-
fication of the orientation and location of safe traversable
ramps, and safe starting poses for driving up the ramps.
Finding traversable ramps is important in the context of
assistive robotic wheelchairs, and also in the broader area
of autonomous mobile robots. By detecting traversable ramp
locations, along with alignment information, custom trajec-
tories can be planned and executed by a path planner and

TABLE I: Performance evaluation at varying offset angles and distances to a variety of ramp structures.

Structure Offset Distance | Frames | True Positives | False Positives

Angle (°) (m) # % # %

Indoor Ramps 0 0.0 15 15 100.0 0 0.0
(ascending) 10 0.5 15 15 100.0 0 0.0
20 2.0 15 14 93.3 0 0.0

30 0.8 15 15 100.0 0 0.0

45 0.8 15 14 933 1 6.7

45 1.8 15 13 86.7 2 133

90 1.0 15 10 66.7 5 335

Indoor Ramps 0 0.0 15 15 100.0 0 0.0
(descending) 45 0.8 15 14 93.3 0 0.0
75 0.5 15 13 86.7 2 13.3

Outdoor Ramps 0 0.5 30 29 96.7 0 0.0
(ascending) 0 2.5 30 20 66.0 1 33
20 0.0 30 28 924 0 0.0

30 0.5 30 28 924 1 33

45 0.8 30 22 72.6 2 6.6

45 1.8 30 20 66.0 6 19.8

Outdoor Ramps 0 0.5 15 14 93.3 1 6.7
(descending) 45 1.8 15 12 80.4 2 13.3
45 2.5 15 10 66.7 4 26.6

Van Ramp 0 1.8 30 15 100.0 0 0.0
45 1.5 30 29 96.7 1 33

45 2.0 30 28 92.4 2 6.6
Mean 87.9% 7.1%

controller to comfortably and safely drive up ramps, which
can be a difficult and dangerous task if using binary control
interfaces such as SNP devices. This work was done with
the aim of benefiting assistive wheelchair technologies by
realizing the difficult problem of ramp traversal.

Future work includes dealing with differently shaped top
and bottom ramp landings, as well as dealing with infrared
light during daylight outdoor navigation on clear days, as this
accounts for most of the errors in our perception algorithm.

ACKNOWLEDGMENT

The authors thank Jarvis Schultz for discussions during
the algorithm development.

REFERENCES

[1] K. Kulig, S. S. Rao, S. J. Mulroy, C. Newsam, J. K. Gronley, E. L.
Bontrager, and J. Perry, “Shoulder joint kinetics during the push
phase of wheelchair propulsion,” Clinical Orthopaedics and Related
Research, vol. 354, pp. 132-143, 1998.

[2] “Wheelchair ramp navigation.” [Online]. Available:
rollmobility.com/2010/08/23/wheelchair-ramp-navigation/

[3] S. Boucher, “Obstacle detection and avoidance using turtlebot platform
and xbox kinect.” Rochester Institute of Technology, Tech. Rep., 2012.

[4] M. Derry and B. Argall, “Automated doorway detection for assistive
shared-control wheelchairs,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2013.

[5] S. Jain and B. Argall, “Automated perception of safe and ori-
ented docking locations with alignment information for assistive
wheelchairs,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2014.

[6] A. Rankin, A. Huertas, and L. H. Matthies, “Nighttime negative
obstacle detection for off-road autonomous navigation,” Unmanned
Systems Technology IX, 2007.

[71 S. Cockrell, L. Gregory, and W. Newman, “Determining navigability
of terrain using point cloud data,” in Proceedings of the IEEE
International Conference on Rehabilitation Robotics, 2013.

[8] A. Murarka, M. Sridharan, and B. Kuipers, “Detecting obstacles and
drop-offs using stereo and motion cues for safe local motion,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008.

http://blog.

[9]1 A.Murarka and B. Kuipers, “A stereo vision based mapping algorithm
for detecting inclines, drop-offs, and obstacles for safe local naviga-
tion,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2009.

C. Tseng, I. Li, Y. Chien, M. Chen, and W. Wang, “Autonomous stair
detection and climbing systems for a tracked robot,” in Proceedings
of the International Conference on System Science and Engineering,
2013.

S. Brossette, J. Vaillant, F. Keith, A. Escande, and A. Kheddar, “Point-
cloud multi-contact planning for humanoids: Preliminary results,” in
Proceedings of the IEEE Conference on Robotics, Automation and
Mechatronics, 2013.

C. Lutz, F. Atmanspacher, A. Hornung, and M. Bennewitz, “NAO
walking down a ramp autonomously,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012.
E. Demeester, E. V. Poorten, A. Huntemann, and J. D. Schutter,
“Wheelchair navigation assistance in the FP7 project RADHAR: Ob-
jectives and current state,” in The IROS 2012 workshop on Navigation
and Manipulation Assistance for Robotic Wheelchairs, 2012.

[14] L. Trahaniaa and S. Argyros, “Vision-based assistive
navigation for robotic wheelchair platforms.” [Online].
Available: http://www.academia.edu/12411515/vision-based_assistive_
navigation_for_robotic_wheelchair_platforms

O. Horn and M. Kreutner, “Smart wheelchair perception using odom-
etry, ultrasound sensors, and camera,” Robotica, vol. 27, no. 02, pp.
303-310, 2008.

A. Siadat, K. Djath, M. Dufaut, and R. Husson, “A laser-based mobile
robot navigation in structured environment,” in in Proceedings of the
European Control Conference, 1999.

A. M. Sabatini, V. Genovese, E. Guglielmelli, A. Mantuano, G. Ratti,
and P. Dario, “A low-cost, composite sensor array combining ultra-
sonic and infrared proximity sensors,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1995.
D. Kairy, P. Rushton, P. Archambault, E. Pituch, C. Torkia, A. E.
Fathi, P. Stone, F. Routhier, R. Forget, and L. Demers, “Exploring
powered wheelchair users and their caregivers perspectives on poten-
tial intelligent power wheelchair use: A qualitative study,” International
Journal of Environmental Research and Public Health, vol. 11, no. 2,
pp. 2244-2261, 2014.

“American’s with disabilities act standards for accessible design,
2010,” http://www.ada.gov/2010ADAstandards_index.htm.

[20] “Point cloud library,” http://docs.pointclouds.org/trunk/modules.html.

[10]

[11]

[12]

[13]

[15]

[16

(171

[18]

[19]

