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Abstract— Shared-control for assistive devices can increase
the independence of individuals with motor impairments. How-
ever, each person is unique in their level of injury and physical
constraints. Consequently, a plethora of interfaces are used to
control the assistive device, depending on the individual. In
order to be effective, the shared-autonomy assistance should
be aware of the usage characteristics of the interface and
adjust to varying performance characteristics of the person.
To that end, we conduct a 23 person (9 spinal cord injured and
14 uninjured) study using three commercial interfaces used
to operate powered wheelchairs, and establish performance
measures to characterize interface usage. The analyses of
our performance measures unveil key aspects of the interface
operation that can inform features of a customizable and
interface-aware control sharing framework.

I. INTRODUCTION

Assistive devices such as powered wheelchairs are de-
signed to provide independence to people living with var-
ious motor impairments. When a person with a particular
impairment is fitted for an assistive device such as a powered
wheelchair, the seating clinician will take the unique abilities
and physical constraints of the individual into account. This
is particularly true when choosing the control interface the
person will use to operate their assistive device. The chosen
interface can affect how a person operates their device and
what operational challenges they may face. For example, a
person using a head array interface can experience a limited
visual field while maneuvering as a result of trying to avoid
head motions that lead to an unwanted control command.
They also may experience elevated levels of fatigue in their
neck and torso during lengthy maneuvers and trips due to
the repetitive activation of these muscles.

Commercially available interfaces employed for control-
ling assistive devices can be either proportional—where the
user has control over both which control signal to generate
and its magnitude—or non-proportional—where the user
only has control over the selection of which signal to turn
on or off. Common interfaces can be one, two, or three
dimensional. For example, a person with high cervical-level
spinal cord injury who does not have upper-limb motor
function and uses a powered wheelchair may be fitted with a
sip/puff device. The powered wheelchair operates in SE(2)
configuration space, whereas through a sip/puff interface,
the human can only provide a limited subset of commands
[us,u,] € SE(2) at a time; either u; € R (translation) or
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u, € S (rotation). This can make the control of the powered
wheelchair more challenging as the human will need to now
switch between the different subsets of the control space in
order to fully maneuver the wheelchair.

Robotics autonomy can help mitigate the burden of control
mode switching as well as other challenges that exist in
operating an assistive device. When formulating assistive
autonomy, however, it is important to complement the hu-
man’s residual abilities rather than supersede them to ensure
operator satisfaction, empowerment, and acceptance [1], [2].
The concept of shared-control fits neatly within this domain.
Considerable research has gone into the design of differ-
ent aspects of shared-control that can affect joint human-
robot performance. These aspects, among others, include
features in a shared-control paradigm such as adaptation
and personalization of assistance [3], situation- and context-
awareness [1], intent inference [4], implicit or explicit cues
for when autonomy should step in and how to arbitrate
between autonomy and human commands [5].

When designing shared-control for assistive robotics, an
important observation is that users who are most severely
impaired (and therefore can benefit the most from a shared-
control paradigm) often have their input filtered through a
low-dimension and low-information interface. Custom in-
terfaces, such as body machine interfaces (BMI) [6] have
been designed to make assistive devices accessible to those
with severe impairments who cannot operate typical com-
mercial interfaces. These devices are heavily researched
and, therefore, often characterized. This characterization has
shown to improve the design of customized control sharing
methods [7]. Unfortunately, this research has not extended
to common interfaces available outside of research, where
a large population could benefit from this type of work.
Reasons for this gap may be a lack of a generic testing frame-
work and performance measures for evaluating wheelchair
interface operation.

To fill this gap, we designed command-following and
trajectory-following tasks to experimentally evaluate inter-
face usage characteristics of end-users in a controlled setting.
Our contribution is five-fold:

1) We define measures for evaluating interface usage.

2) We quantitatively compare usage characteristics across
three common powered wheelchair interfaces, by per-
sons with and without spinal cord injury.

3) We demonstrate that these measures correlate and can
predict usage characteristics.

4) We present insights that inform decisions for formu-
lating features of shared-control.



5) We contribute an open source software package for
evaluating interface operation performance.

We first cover a brief background on relevant literature
in Section II. We then provide a detailed description of
our study design in Section III followed by our perfor-
mance measures and the results of our experimental study
in Sections IV and V. A discussion of these results and
the implications for the design of adaptable autonomy is
provided in Section VI. We conclude with our proposal for
future work in Section VIIL.

II. BACKGROUND

Shared-control offers many benefits to human-robot teams
by leveraging the advantages of both robotics autonomy and
humans. However, the interface through which the human
and robot interact can affect team performance. Thus, it may
be useful to consider properties of the interface as parameters
that modulate the joint performance of a shared-control
strategy. To that end, our work draws from two categories of
research: (1) interface usage characterization and (2) shared-
control. We also discuss literature on interface-aware shared-
control.

A. Interface Characterization

Prior work uses video games to understand an interface’s
influence on human-robot team performance [8]. The authors
classify interfaces based on their inputs and outputs and use
the information to create a framework for systematically
evaluating interfaces in the human robot interaction (HRI)
domain; however, this framework does not provide sufficient
information to inform an adaptable autonomy algorithm. In
the domain of assistive technology, clinicians are surveyed
about the usefulness and adequacy of powered wheelchair
control interfaces for their patients [9]. Their results pro-
vide subjective evidence for a need to integrate robot au-
tonomy into conventional powered wheelchairs. However,
their results do not provide quantitative information on how
interfaces affect powered wheelchair usage which could be
exploited by assistive autonomy. Novel interface technolo-
gies have been developed for those with severe motor im-
pairments, including an isometric joystick [10]. The authors
compared task completion time and accuracy of the novel
interface against a conventional joystick within a control
population but not an end-user population. In another work,
the authors introduce a novel BMI interface and compare
user accuracy and performance between the target spinal
cord injured (SCI) group and an uninjured control group,
but do not compare the performance against any conventional
interfaces [6].

B. Shared-Control

Shared-control distributes control between the human
and autonomous partner to improve overall team perfor-
mance and safety [11]. However, the specific shared-control
paradigm is often domain and application specific [12]. Some
work aims at general principles for designing the correct

paradigm or level of autonomy, but does not adapt to features
of the human-robot team [5].

Designing autonomous controllers that adjusts to the user
is common in social robotics [13]. In this domain, adaptabil-
ity is particularly useful since each person exhibits unique
emotional characteristics. The field of shared-control, how-
ever, contains less work in adaptability, despite the fact that
users tend to prefer different shared-control paradigms [14].
Some work uses knowledge of the interface to improve
aspects of the autonomy, such as path planning [15], which
is an integral aspect of autonomous assistance, but does
not alter the interaction mechanism of the shared-control
paradigm.

Adaptable shared-control paradigms show promise in their
ability to improve human-robot team performance and safety.
Some work utilize the user’s control behavior to vary pa-
rameters of the shared-control paradigm [11]. For instance,
distance to obstacles is a common metric for allocating
control between the human and robot [16], as is notions of
trust [17] or the discretion of the user [18]. Other work uses
a combination of smoothness, directness and safety to define
user efficiency and skill for weighting the user’s input [3].

C. Interface-Aware Shared-Control

Prior work has proposed an adaptable autonomy frame-
work that takes into account interface and time-delay [19].
Another work develops sliding autonomy where the assis-
tance specifically incorporates knowledge of interfaces [20].
In all of these, the hardware characteristics are considered,
but not the usage characteristics which may be used as
parameters for an adaptive shared-autonomy strategy.

More recently, a probabilistic control-blending framework
for wheelchair control was proposed and the performance
was compared against a baseline linear blending strategy
using three common wheelchair interfaces in a population of
controls [7]. They used a model of the interface velocities to
improve inference of the user’s intended velocity. In a similar
vein, a probabilistic framework was proposed for discerning
the most probable intended goal from noisy joystick input
when driving similar paths [21].

Previous work utilizes knowledge of the interface and user
population as a stimulus for designing sufficient autonomy
and control sharing. However, there is a gap in research
where a shared-control paradigm can adapt to various fea-
tures of interface usage and expertise. In this paper, we begin
to fill this gap with an experimental interface characterization
methodology to inform a customizable autonomy algorithm.

III. EXPERIMENTAL METHODS

This section provides a detailed description of the research
design and procedures used in the experiment.

A. Hardware
The study was conducted using three interfaces and two
computer game tasks*. The three interfaces for this study

*Source code: https://github.com/argallab/interface_assessments
Game engine: godotengine.org
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Fig. 1: Control interfaces used in this study. From left to
right: 3-axis joystick, head array system, sip/puff switch.

(Fig. 1) were particularly selected since they are the most
common types of interfaces employed by SCI users of
powered wheelchairs [9]. The selection used in this study
were (1) an ASL 533 Compact joystick (ASL, TX, USA),
(2) 105 electronic head array system (ASL, TX, USA), and
(3) sip/puff switch (Origin Instruments, TX, USA), which
were two dimensional proportional, two dimensional non-
proportional, and one dimensional non-proportional, respec-
tively. The range for all three interfaces were normalized to
be between -1 and 1.

B. Participants

The study consisted of 23 participants: 9 with spinal
cord injury (41.6 4+ 13.9 years, levels C3-C6, complete
and incomplete) and 14 uninjured (31.6 £ 9.1 years). The
experiment was approved by the Northwestern University
Institutional Review Board (STU00207312) and informed
consent was obtained from all subjects.

C. Tasks

The experiment consisted of a command following and
trajectory following task. The tasks were designed in a
simulated environment so that uncertainties from real world
dynamics did not corrupt the performance measures.

1) Command Following: The command following task
was designed to uncover a subject’s ability to respond to a
visual command stimulus in terms of accuracy of response,
response time, and how steadily they issued a specific com-
mand (Fig. 2c). In this task, a white arrow—the command
prompt u—appeared on the screen pointing in different
directions in a randomly balanced sequence. The directions
included the four cardinal and four inter-cardinal angles. The
subject was instructed to issue a command for the same
direction as soon as they saw the command prompt and to
continue issuing the command uninterrupted for the duration
of the prompt (7"). The blue arrow was the feedback of the
actual command issued by the user. In our implementation
of the command following analyses, we evaluate only one
dimension of —the heading—and ignore magnitudes since
the magnitudes are discrete for the head array and sip/puff
interfaces and i is a unit vector.

2) Trajectory Following: The trajectory following task
was designed to evaluate how well users were able to follow
a predefined path (Fig. 2a). Trajectory following can be
thought of as the inherent ability to generate commands to
follow way points while using visual feedback correction.
The ability to follow a trajectory where there was a sin-
gle known goal—without interference from the wheelchair
dynamics and external sources of noise—aimed to uncover

Rigl

ﬁﬁ-...“ Lefe
]

Turn

White paﬁ:
Forward plarget

Prompt Command

= p- User
Command

-
Blue path:
Reverse

(b) ©

Fig. 2: Study tasks. (a) The square and curve path portions of
the trajectory following task. (b) Trajectory following task.
(¢) Command following task.

how a person’s intended goal may differ from the signal
they output through the interface. The task consisted of
controlling the motion of a 2-D simulated wheelchair (the
yellow pentagon shape in Figure 2b) along a predefined
path. The trajectory began with a square path, followed by a
curved path. Only the path in the immediate vicinity of the
wheelchair was visible at any given moment (as in Fig. 2b).
The participants were instructed to stay within the bounds of
the clearly marked path and to avoid going into the out-of-
bounds grey area. The square and curved paths were designed
such that they contained the basic commands covered by all
three interfaces. The square path consisted of two forward,
two backward, two 90° left turn and two 90° right turn
trajectories. The curved path consisted of two long arcs and
two small arcs.

D. Protocol

Each of the two tasks were performed with a single
interface per study session. The order of the interfaces
was randomly balanced across participants. Each uninjured
subject participated in all three sessions. Not every SCI
subject was able to control all three interfaces. Four SCI
participants were not able to use the joystick, due to no
upper-limb control, and one participant did not have neck
support and was not able to use the head array switch. In each
session, the subject first performed a standardized training
phase (using a clinical standard, the Wheelchair Skills Test")
to become accustomed to the use of that session’s interface.
Then they performed the trajectory and command following
tasks during the experiment phase.

E. Experimental Design

We used a 2x3 mixed design, where the interface was
a within-group factor and whether or not the participant
was uninjured or had a spinal-cord injury was a between-
groups factor. Novelty and expertise was also a factor for the
SCI group since they were experts with one interface—the

Fhttps://wheelchairskillsprogram.ca/en/



interface they use when controlling their personal powered
wheelchair. Therefore, we did an additional analysis between
expert interfaces (that the person used daily and was accus-
tomed to) and novice interfaces (that they did not use and
were unaccustomed to). We did this extra analysis only for
the SCI group, as all of the interfaces were novel for the
uninjured group.

IV. PERFORMANCE MEASURES

Each task is designed to extract specific information about
how people interact with different interfaces. Thus, we use
different metrics to evaluate the performance for each task.

A. Command Following

For the command following measures, M is the total
number of prompted commands, @™ is the m!" prompted
command which occurs at time ¢"* and has duration 7,
uz is the human command at time t, and € is the tolerance
which is set to £10° of the target command.

Average response time (tR): The average of all the time
differences between when a command prompt is given to
the first instance when the subject is able to issue the correct
command (Fig. 3, blue line).

1M
tR= 12> ltu,e— "]
M m=1
where ty, c =min{t € [t",T™"] | |uj — 0"} < ¢}
Here ty, . is the time of the first within-tolerance human

command.

Successful response percent (%R): The percentage of com-
mand prompts to which the user is able to successfully
respond.

M

%R:%ZI'HL

m=1
™ 1, if 3 tetm,T™] stlal, —a"|} <e
0, otherwise.

Here, I"™ is a tracking index.

Average settling time (tS): The time from when a command
prompt is given to when the subject is able to steadily issue
within e of the prompted command (Fig. 3, green line).

1 M

[tuh ,€s tm]
m=1
where

tuye, = min{t € [, T™] | Ju; — 0™} < eVk e [t,T™]}

Here t,,, . is the time at which the human command settled
to within-tolerance.

$When the dimensionality of @ is greater than 1, the arctan(ul, ™)
operator is used to compute this difference.
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Fig. 3: Example user responses (black line) to a target
command with heading § = 180° (magenta dashed line).
tR (blue line) and tS (green line) are annotated for the (a)
joystick (here, tR and tS are superimposed), (b) head array
and (c) sip/puff interfaces.

Settling percent (%S): The percentage of trials for which the
user is able to settle to within € of the prompted command.

1 M
fm:{lv
0,

if 3 ty, e, st.(u, —0"F <eV t>ty, )
otherwise.

Here I™ is a tracking index.

m2

Average difference between settling and response times
(dSR): The time difference between the initial correct
response to the time the response settled to within e.

dSR =15 —tR

A larger dSR means that there is a discrepancy between when
a person can issue a correct response and when they can
continue to issue a steady response, which is indicative of a
noisy transient period of user input.

B. Trajectory Following

For the trajectory following measures, /N is the number
of samples in the trajectory and e is the allowable tolerance
which we set to 5% of the 2-D wheelchair surface area.

Number of times breaking barrier (nBB): The number of
times the 2-D wheelchair breaks the path barrier during task
execution and enters the out-of-bounds gray area.

N
nBB = Z "
n=1

1, if A%, <eand A2 >
0, otherwise.

where [" = {

Here A2 is the area of the 2-D wheelchair footprint out of
bounds at time sample ¢t” and I™ is a tracking index.
Percent time out of bounds (tOB): The percentage of total
task execution time when the 2-D wheelchair is more than
the allowable tolerance outside of the path barriers.

N
2= i — 15
A
Here 7 and t are the n'" time the 2-D wheelchair went
outside and came back into the barrier, respectively.
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Fig. 4: Response times (tR) per (a) interface for the uninjured
and SCI groups and (b) expertise for the SCI group. Percent
of command prompts that were correctly followed (%R)
per (c) interface for the uninjured and SCI groups and (d)
expertise for the SCI group.

V. RESULTS

First we present the statistical analyses for each of the
performance measures described in Sections IV-B and IV-A,
and follow with prediction analysis as it pertains to shared-
control. We analyze group performances for each of the tasks
based on interface type. We use the non-parametric Kruskal-
Wallis test to establish significance. We perform multiple
post-hoc pairwise comparisons with Bonferroni correction
(o = 0.05) to find the strength of significance. For all figures,
the notation * implies a p-value of p < 0.05, ** implies
p < 0.01, and *x** implies p < 0.001.

A. Command Following Performance

To analyze the performance during the command follow-
ing task, we first look at the initial correct response to the
command prompt (tR, %R), and then we look at the time
for the user command to reach and stay within £10° of the
prompted command direction (tS, %S).

Figure 4 shows the tR and %R statistics. When we look at
tR, we see significant differences across all three interfaces
within the uninjured group, and between the joystick and
sip/puff interface within the SCI group (Fig. 4a). Further-
more, there is significant difference in tR when comparing
novice and expert interface performance within the SCI
group (Fig. 4b). However, we see that the SCI group per-
formed similarly across interfaces in terms of %R (Fig. 4c-
4d), meaning that the ability to (eventually) reach the target
command is not significantly different across interfaces, but
the time to reach the target command is. When comparing
the head array device, the ability to reach the target command
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Fig. 5: Settling times (tS) per (a) interface for the uninjured
and SCI groups and (b) expertise for the SCI groups. Percent
of times the user settled within +10° of the prompted
command (%S) per (c) interface for the uninjured and SCI
groups and (d) expertise for the SCI group.
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Fig. 6: Difference between settling and response time per (a)
interface for both groups and (b) expertise for the SCI group.

is significantly lower for the SCI group than the uninjured
group, but when they do reach the target command, response
times are similar.

Figure 5 shows the tS and %S statistics. There are signif-
icant differences in both tS and %S between the uninjured
and SCI group when comparing the head array and sip/puff
device. With those two interfaces, the SCI group responds
fewer percent of the time, and when they do settle to a
steady and accurate command, the settling times are longer.
When comparing tS, there are also significant differences
seen across all three interfaces within both the uninjured
group and the SCI group (Fig. 5a). Additionally, there is
also significant differences in tS when comparing novice and
expert interfaces within the SCI group.

Figure 6 shows the dSR statistics. We observe significant
differences between sip/puff and the other two interfaces.
There is also significant difference when comparing novice
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Fig. 7: Number of times participants broke the path barrier
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(b) expertise for the SCI group.
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and expert interfaces within the SCI group.

B. Trajectory Following Performance

We analyze the trajectory following group performances
by looking at (1) the total number of times that participants
broke the path barrier nBB (Fig. 7) and (2) the percent of
total task time where the participants were not fully within
the path bounds tOB (Fig. 8).

Comparing within the SCI group, we see significance
when looking at the nBB measure across novice and expert
interface usage (Fig. 7b). It is worthwhile to note that all
SCI joystick data is coming from expert users, because every
SCI person who is able to use the joystick also uses a
joystick interface for their personal wheelchair. Despite their
expertise, we see significantly poorer performance in both
trajectory following metrics in comparison to the uninjured
group when using the joystick interface. We also see signifi-
cant difference in both nBB and tOB performance measures
across all three interfaces within the uninjured group, with
the best performance being achieved with the joystick and the
worst performance with the sip/puff interface in both cases.

C. Interface and Intent Prediction Results

We perform two additional analyses to demonstrate (1)
that it is possible to use our proposed measures for interface-
awareness and (2) the importance of interface-awareness in
shared-control.

Sip/Puff
scl

Joystick 4 Head array

Uninjured

tR (s)

0
tS (s)

Fig. 9: Response times (tR) versus settling times (tS) for
(right) uninjured and (left) SCI groups.

Given the results from the %R, tR, %S, and tS statistics,
we expect that the interfaces can be grouped using these
measures. In Figure 9 we plot tR against tS. We see that the
interfaces fall into distinct clusters with different distribu-
tions. With a combination of both uninjured and SCI group
data, we are able to fit a second order polynomial regression
model to the data, with R2 = 0.96 and RM SE = 0.34. We
are also able to classify the interfaces with %96 accuracy
using a k-nearest neighbors model (k=10) with 5-fold cross
validation. These results demonstrate not only the ability to
accurately classify the interfaces with tS and tR, but also the
capability to predict the tS response given tR.

Furthermore, we use the intent inference method imple-
mented on our smart wheelchair platform to predict the
goal given each sampled user input [14], which is possible
because we designed the trajectory following task such that
there is no ambiguity regarding the intended goal at any
given time. There is a significant difference in the percent
of wrong predictions between interfaces within the uninjured
group (Fig. 10) and the same trend appears for the SCI group,
which demonstrates that using the same intent inference
strategy results in significantly different prediction errors
depending on the interface—evidence for the importance of
interface-awareness in shared-control.

VI. IMPLICATIONS FOR SHARED-CONTROL

We now discuss how the results of Section V can inform
decisions that should be made when formulating control
sharing for assistive devices for people with SCI. Particularly,
we are interested in (a) how we interpret the user input
command, (b) with the intention of inferring a local goal,
and (c) deciding when and if autonomy steps in based on
the user input command.

A. User Signal Interpretation

Putting together the results from Figures 4 and 5, we see
that the SCI group is able to give an initial response to the
prompted command similar to the uninjured group, but they
take longer to respond and they are not able to hold the
response as steadily as the uninjured group. This is similar
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to a noisy signal with lag which suggests that instead of
using the raw user command signal, we need to filter the SCI
command in order to receive a clearer user input. This may
seem counter intuitive at first because, with limited interfaces
such as the sip/puff, the teleoperation signal is already filtered
through the control interface. From Figure 9 we also see
that the interfaces fall into distinct clusters when looking at
the correlation between settling and response time, which
indicates that the filtering parameters will differ based on
the characteristics of the interfaces.

When considering tR and tS, the head array and sip/puff
both have longer values than the joystick, which means there
is a delay in the signal issued from the user and what
prompted them to issue that signal. Furthermore, with the
sip/puff device, dSR is large in comparison to either the
joystick or head array interfaces. This implies that not only
is there a delay in the signal, but the signal contains more
noise and vacillations.

Differences in performance measures between novice and
expert interfaces within the SCI group indicate that user
skill and expertise need to be accounted for in addition
to the interface characteristics. Furthermore, the differences
between the uninjured and SCI group in %R, nBB, and tOB
for the joystick interface, tS for the head array and sip/puff
interfaces, and %S for all three interfaces provides evidence
for why we need to treat the SCI signals differently and we
cannot rely on algorithms designed solely on uninjured data.

B. Intent Inference

In shared-control, typically a fully autonomous robot
command u,(t) is generated and then arbitrated between
with the human command uy, (¢). In order to generate u,.(t)
in a way that assists the human, we need a notion of the
human’s intentions. In some cases, there is a global desired
goal g, (e.g. navigating through a doorway, picking up a
cup), but often there is not, and the robot must make a
best estimate of the local position or low-level velocity goal
g, that the human is trying to achieve. Different estimation
methods have been proposed in literature, and one common
practical method for finding g, in mobile robotics is to
forward project the pose X; into the future for some time
At given the human command uy(t) (either the current
command or a filtered window of previous commands [22]).
That is, g, = X; + up(t)At.

However, as we have seen from our results in Section V,
the current uy,(t) may be delayed and/or noisy. As a result,

forward projecting the current uy, (¢) may result in inferring a
wrong or invalid g,,, which in turn can lead to the autonomy
providing incorrect assistance. Unwanted or incorrect assis-
tance can lead to the human user’s frustration. The results of
our experiments thus imply that the autonomy should wait
for the user signal to settle before reasoning about what the
goal should be. This may make autonomy less responsive but
at the benefit of hopefully being more correct and reduced
conflict between the human and autonomy.

Our results also show that the amount of delay in the hu-
man command can differ between interfaces. As such, when
designing shared-control paradigms that explicitly reason
about this delay, the paradigm should adapt the delay window
based on the interface, either deterministically or probabilis-
tically from the distributions we have found experimentally.
Furthermore, combining uy,(¢) with sensor data z(t)—such
as distance to obstacles or identifiable landmarks—can yield
more information about a human’s intent. However, if there
is a delay in wuy(t), the robot autonomy should reason
carefully about the time-synchronization between user signal
and sensor signal.

The results of Figure 10 demonstrate that when the auton-
omy does not take into account the interface—more specif-
ically, the operation characteristics of the interface—it can
make erroneous predictions. These errors vary significantly
based on the individual usage characteristics of the interface.

C. Autonomy Cue

There are various ways to formulate the shared-control
strategy in how it arbitrates between uy,(¢) and u,.(t), given
g, and/or other environmental features such as obstacles. One
common approach in the literature is linear blending, where a
blending factor « is used to weight how much each command
contributes to the final output A(uf,ul) = (1 — ) - u} +
oul [16]. Again, here we see a potential issue with time
synchronization, if the human command uy(¢) is received
with a delay and is in response to an earlier world state, while
the autonomy command u,(¢) is formulated in response to
the current world state time ¢.

There is a recent trend toward automatically adjusting or
scaling the level of autonomy using implicit cues [5]. One
implicit cue that has been used in several implementations as
a trigger for when autonomy should step in is when a human
is giving an incorrect or dangerous signal. As our results
show, however, this may be a transient or temporary settling
signal. If the autonomy does not account for the settling time,
it may unnecessarily take control away from the user. For an
SCI person who is adept at driving a powered wheelchair and
can issue a correct signal eventually, the autonomy and intent
inference would make more frequent mistakes, increasing the
disagreement between human and autonomy which can lead
to the dissatisfaction of the human and an unwillingness to
adopt the autonomy.

D. Guidelines

Using the above insights, we provide guidelines for for-
mulating control sharing in the domain of assistive devices



for people with SCI who use varying interfaces.
1) How do we interpret the user input command?

« Based on the interface and injury, anticipate signal delay
or transient noise (or both).

« If filtering out transient noise, the filter properties should
be interface-aware.

2) What is the user’s intended goal?

« Intent inference should be aware of and anticipate the
delays or noise in human signal that is filtered through
an interface.

« Tools that rely on a comparison of human and autonomy
commands should consider a prior human command
when comparing it to the current autonomy command,
or wait until the user signal settles.

2) When should autonomy step in?

e Shared-control should reason about which human sig-
nals to act on or respond to (trigger).

o Uncertainty and error can be mitigated by interface-
awareness, which in turn can improve agreement be-
tween the human and autonomy.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we highlighted the importance of interface
awareness for adaptive shared-autonomy in the domain of
assistive devices for people with motor impairments who
often use limited interfaces. Our experimental data suggested
it is important to consider the usage characteristics of an
interface when reasoning about user input for the purposes
of intent inference, goal projection, and control sharing.
Based on the statistical analyses of our results, we provided
guidelines to consider when formulating shared-control that
is interface aware. Our future work will implement these
findings into a shared-control framework and evaluate our
approach against standard techniques.
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